Ph 451/551   Quantum Mechanics

Physics Department, Oregon State University

Winter 2026 term

Instructor: Oksana Ostroverkhova (Wngr 413)
Lectures: MWF 12 pm, Weniger 328
Course Information
(pdf file) 


DateLectures AssignmentsNotes
01/05 Review of measurements. (notes) (supplement)   PH 451 WS 1 (PH 551 WS 1)  
01/07 Review of basic quantum systems. (notes) HW 1 PH451 (solutions) (HW 1 PH551 (solutions)) PH 451 WS 2 (PH 551 WS 2) WS 2 analysis Review questions
01/09 Review: inifinite and finite well. Energy spectra and wavefunctions in arbitrary potential. (notes)   WS 3 WS 3 analysis  
01/12 Harmonic oscillator: number representation. Raising and lowering operators. (notes) Reading: Ch. 9.1, 9.2. HW 2 PH451 (solutions) (HW 2 PH551 (solutions)) WS 4 (PH 551 WS 4) WS 4 analysis  
01/14 Harmonic oscillator: energy spectrum and ladder operators.(notes) Reading: Ch. 9.2-9.3. WS 5 (PH 551 WS 5) WS 5 analysis  
01/16 Harmonic oscillator: position representation, expectation values. (notes) Reading: Ch. 9.4-9.7. WS 6 (PH 551 WS 6) WS 6 analysis  
01/19 no class: Martin Luther King   day  
01/21 Harmonic oscillator: uncertainty relations, measurements. (notes) Reading: Ch. 9.1-9.7. HW 3 PH451 (solutions) (HW 3 PH551 (solutions)) WS 7 (PH 551 WS 7) WS 7 analysis papers for HW3: H. O. in quantum optics, H.O. in ion trapping
01/23 Harmonic oscillator: time dependence and applications. (notes) (supplement) Reading: Ch. 9.8-9.9. WS 8 (PH 551 WS 8) WS 8 analysis  
01/26 Time-independent perturbation theory: non-degenerate case, first-order energy correction. (notes) Reading: Ch. 10.1-10.3. WS 9 (PH 551 WS 9) WS 9 analysis  
01/28 Time-independent perturbation theory: non-degenerate case, first-order state correction. (notes) (supplement) Reading: Ch. 10.3-10.4. HW 4 PH451 (solutions) (HW 4 PH551 (solutions)) WS 10 (PH 551 WS 10) WS 10 analysis  
01/30 Time-independent perturbation theory: non-degenerate case, second-order energy correction. (notes) (supplement) Reading: Ch. 10.1-10.4. WS 11(PH 551 WS 11) WS 11 analysis  
02/02 Time-independent perturbation theory: degenerate case. (notes) (supplement) Reading: Ch. 10.5.    
02/04 Degenerate perturbation theory: example - linear Stark effect. (notes) (supplement) Reading: Ch. 10.5-10.6. Also: review Ch. 7-8 and finding eigenvalues and eigenvectors in matrix representation. WS 12(PH 551 WS 12) WS 12 analysis  
02/06 Degenerate perturbation theory: hyperfine structure of the hydrogen atom. (notes) Reading: 11.1-11.3. (Also: preparation for midterm: Ch. 9; 10.1-10.4, HW1-4, WS1-11) WS 13(PH 551 WS 13) WS 13 analysis
02/09 Addition of angular momenta.(notes)  
02/11 Midterm