

Homework #1

(due Wednesday, January 14, 2026)

1. (10 pts) McIntyre 2.17
2. (10 pts) McIntyre 5.11
3. (10 pts) The particle is moving in a potential described by $U(x) = -\lambda\delta(0)$ where λ is a positive constant.
 - (a) What is the dimensionality of λ ?
 - (b) Sketch the potential energy $U(x)$
 - (c) Solve the energy eigenvalue equation analytically to find the bound state energy eigenvalue and corresponding eigenfunction.
 - (d) Sketch the wavefunction and discuss its features.
4. (10 pts) Fill in the table that describes the different representations of the operators, eigenvalues, eigenstates *etc.* for a quantum particle subject to a 1-dimensional infinite square well potential energy (p. 2).
5. Review Ch. 1-5 of McIntyre.

1-d infinite well potential energy	Ket Representation	Matrix Representation	Wave Function Representation	Graph Representation (if any)
Hamiltonian				
Eigenvalues of Hamiltonian				
Normalized eigenstates of Hamiltonian				
Coefficient of n^{th} energy eigenstate				
Probability of measuring E_n				
Expectation value of Hamiltonian				

