

List of suggested review questions (based on Ch. 1-8)

POSTULATES List the postulates of quantum mechanics.

PHYSICAL OBSERVABLES For each of the following physical observables, answer these questions:

Position For the operator \hat{x} characterizing the position of a particle,

- What is the action of \hat{x} on a quantum wave function $\psi(x, t)$?
- In Dirac notation, what is the eigenvalue equation for the eigenvalues and eigenstates of \hat{x} ? What are the allowed values of the eigenvalues of \hat{x} ?
- What are the position-space eigenfunctions of \hat{x} i.e. what is $\langle x|x'\rangle$?
- In both Dirac notation, and in terms of the position-space eigenfunctions, what is the completeness relation for the eigenstates of \hat{x} ?

Momentum For the operator \hat{p} characterizing the (linear) momentum of a particle,

- What is the action of \hat{p} on a quantum wave function $\psi(x, t)$?
- In Dirac notation, what is the eigenvalue equation for the eigenvalues and eigenstates of \hat{p} ? What are the allowed values of the eigenvalues of \hat{p} ?
- What are the position-space eigenfunctions of \hat{p} i.e. what is $\langle x|p\rangle$?
- In both Dirac notation, and in terms of the position-space eigenfunctions, what is the completeness relation for the eigenstates of \hat{p} ?

Orbital angular momentum For the operator \vec{L} characterizing the orbital angular momentum of a particle,

- What are the commutation relations obeyed by the components $\{L_x, L_y, L_z\}$ amongst themselves? What's the commutator between these components and \vec{L}^2 ?
- In spherical coordinates, what is the action of the operators \vec{L}^2 and L_z on a wave function $\psi(\vec{x}, t)$?
- In Dirac notation, what is the eigenvalue equation for the eigenvalues and eigenstates of \vec{L}^2 and L_z ? What are the allowed values of the eigenvalues of \vec{L}^2 and L_z ?
- What are the position-space eigenfunctions of \vec{L}^2 and L_z ?
- In both Dirac notation, and in terms of the position-space eigenfunctions, what is the completeness relation for these eigenstates?

Spin angular momentum For the operator \vec{S} characterizing the spin of a particle,

- What are the commutation relations obeyed by the components $\{S_x, S_y, S_z\}$ amongst themselves? What's the commutator between these components and \vec{S}^2 ?
- In Dirac notation, what is the eigenvalue equation for the eigenvalues and eigenstates of \vec{S}^2 and S_z ? What are the allowed values of the eigenvalues of \vec{S}^2 and S_z ?
- In Dirac notation, what is the completeness relation for these eigenstates?
- In both Dirac notation and the corresponding matrix representations, what are the eigenstates of the operators $\{S_x, S_y, S_z\}$ expressed in the S_z -basis for the cases of spin-1/2 and spin-1?
- For each of the cases of spin-1/2 and spin-1, what are the matrix representations of the components $\{S_x, S_y, S_z\}$ of the operator \vec{S} in the basis of eigenstates of S_z ?

QUANTUM UNCERTAINTY For two physical observables described by operators \hat{A} and \hat{B} ,

- What is the commutator of \hat{x} and \hat{p} ?
- What is the uncertainty relation characterizing how accurately one may simultaneously measure the values of \hat{A} and \hat{B} ? Be certain to define all terms.
- When is it possible for \hat{A} and \hat{B} to have a common set of eigenstates?

TIME EVOLUTION Consider a system in a quantum state $|\psi(t)\rangle$ that is subject to a Hamiltonian H with eigenstates $\{|E_n\rangle\}$ and corresponding energies $\{E_n\}$. The corresponding position-space wave function is $\psi(x, t) \equiv \langle x|\psi(t)\rangle$, and the energy eigenfunctions are $\varphi_n(x) \equiv \langle x|E_n\rangle$.

- Write down the Schrödinger Equation (SE) in both Dirac notation, and as a differential equation in position-space.
- Write down the Time-independent Schrödinger equation (TISE) in both Dirac notation, and as a differential equation in position-space.
- If the initial state is $|\psi_0\rangle$, what is $|\psi(t)\rangle$? Write down the answer in both Dirac notation, and in terms of the position-space energy eigenfunctions.

PARTICULAR PHYSICAL SYSTEMS

For each of the following physical systems,

- Particle of mass m in a box of width a extending from $x = 0$ to $x = a$.
- Particle of mass μ confined to move on a ring of radius a .
- Particle with mass m , charge q , and spin-1/2 in a magnetic field \vec{B} .
- Electron in a Hydrogen atom.
- Free particle of mass m .

answer the following questions:

- What is the potential energy ? Sketch.
- What are the boundary conditions?
- What is the Hamiltonian for this system?
- Write down the time-independent Schrodinger equation. Write down the answer both in Dirac notation and as a differential equation in terms of the position-space energy eigenfunctions.
- What is the energy spectrum? Continuous or discrete?
- What are the position-space wavefunctions?