PH 451/551 Solutions of HW #1 Winter 2026
(due January 14, 2026)

1. MclIntyre 2.17.
We are given a spin-1 particle in an arbitrary state.

a) The possible results of a measurement of the spin component S, are always +1#, O, —1# for
a spin-1 particle. The probabilities are
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b) The expectation value of §_is
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2. Mclntyre 5.11.

We are given an initial wave function, which corresponds to that of the ground state of a box of
size L. Hence the initial state is

0 x<0,x>L
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If the box is expanded "suddenly," it means the wave function remains unaltered, at least for a
short time after the expansion. Now we want the probabilities that the particle in the expanded
box is in the ground state and first excited state of the expanded box. The probability that the

initial state ‘Wm) 772 (x) is measured to be in the final state ‘y/ r m,) U (x) is the square
of the projection of the two states:
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The energy eigenfunctions of the expanded box are
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between 0 and 3L.

(1) We are interested in the term with n = 1; this is the ground state of the new box. Break the
integral over the new box into two pieces, with one piece being zero:
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There is a 13% chance that the particle is measured in the ground state of the expanded box.
(i1) Now the n = 2 state:
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There is a 33% chance of finding the particle in the second state. This seems reasonable because
the second state of the bigger box is a better match to the first state of the smaller box.



3. Solve the energy eigenvalue equation analytically to find the bound state energy
eigenvalue and eigenfunction (there is only one bound state) of the potential energy
U (x) =—Ao (O) where A is a positive constant.

(a)-(b) The constant A has dimensions of [energy * length]. In particular:

4 The delta function has dimensions of the reciprocal of its
S o - -, argument, in this case length. The reason is that
™ Jm &(x)de=1. So for 15(0) to have the dimensions of
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energy, A must have dimensions of [energy*length].
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(c) "Bound state" means that £ <0, i.e. it is less than the energy of the top of the well.

The delta function well is a limiting case of the finite well, just infinitely thin and infinitely
deep. It is interesting because it admits only one bound state.

Energy eigenvalue equation:
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Notice that, away from zero but even arbitrarily close to it, the solution is the sum of
exponentially decaying and growing functions. To ensure that the function goes to zero at
+infinity, reject the exponentially growing solution. Introduce constants 4 and B.
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and continuity at x = 0 requires 4 = B.
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Integrate the equation across x = 0 where the delta function has its singularity, and let &->0.

e diy{x) 2mA e ¢ 2mE
——dx + O(0)w{x)dx=— x)dx
JLL‘ dxz ?’-12 J‘if ( )w( ) j—a h'i w( )
—(0)=4 0
(1) The wave function is continuous, but its derivative is not necessarily continuous if the

potential is infinite, as we see here. The integral of the second derivative is the first
derivative. Evaluate the first derivative at values slightly greater than zero (where the
first derivative is negative) and at values lightly less than zero (where it is positive).
(i1) The integral of the delta function gives the value of the wave function at the position
of the delta function.
(ii1))  The integral over the wave function is whatever it is, but the difference in the value
on either side of zero is infinitesimal and goes to zero as &->0.
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(recall that £<0 for a bound state)

Normalization gives the value of 4:
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Substitute for |E|:

2m|E| _ 2m A’ A [ZmE)M B [2;712/12 Jm _Nmd

h 2nt 2ht h



f mA?
v(x)= T ; E=or
I: e’ x<0

(d) The wave function is continuous but has a cusp corresponding to the discontinuous
first derivative. As the wave function approaches 0 at large x, this is a bound state. Note
that the wave function is even — the wave functions of symmetric potentials are expected

to be of definite parity — either even or odd — which is supported by this observation.
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Fill in the table that describes the different representations of the operators, eigenvalues,
eigenstates efc. for a quantum particle subject to a 1-dimensional infinite square well
potential energy (p. 2).
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