

Worksheet #2

Wednesday, January 7, 2026

Name:

Questions (5 pts):

Consider a particle in an infinite potential well ($V = 0$ for $0 < x < L$ and $V = \infty$ elsewhere). As you know, the eigenfunctions of the Hamiltonian for this system are given by

$$\varphi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{\pi n x}{L}\right)$$

It is known that the particle is in a state described by some wave function $\psi(x)$.

Write down the integrals you would need to take to calculate the following:

(a) The probability of finding the particle somewhere between 0 and $L/2$

$$\int_0^{L/2} |\psi(x)|^2 dx$$

(b) The coefficients c_n if you present $\psi(x)$ as a superposition of eigenfunctions $\varphi_n(x)$,
i.e. $\psi(x) = \sum_n c_n \varphi_n(x)$

$$c_n = \int_0^L \varphi_n^*(x) \psi(x) dx = \sqrt{\frac{2}{L}} \int_0^L \sin\left(\frac{\pi n x}{L}\right) \psi(x) dx$$

(c) **If you have time:** You make a measurement of energy. What are the possible outcomes of the measurement? How do you decide which outcomes are likely or

unlikely? $\rightarrow E_n = \frac{\hbar^2 \pi^2 n^2}{2mL^2}$

$$P_n = |c_n|^2$$

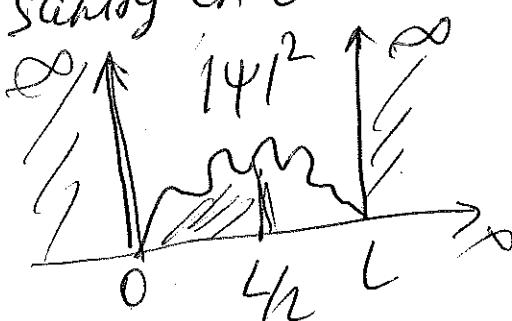
(if $0 \rightarrow$ not realized)

Analysis of WS#2

Common mistakes:

- prob. to find the particle in $[0, \frac{L}{2}] \Rightarrow \int_0^{L/2} |\psi|^2 dx$ instead of $\int_0^L |\psi|^2 dx$

Sanity check: remember



$$\int_0^L |\psi|^2 dx = 1$$

Total prob. = 1
(total area under $|\psi|^2$ curve)

$\psi(0)$ where is the particle?

Answers this

$$\int_0^{L/2} |\psi|^2 dx$$

Prob. to find
the particle

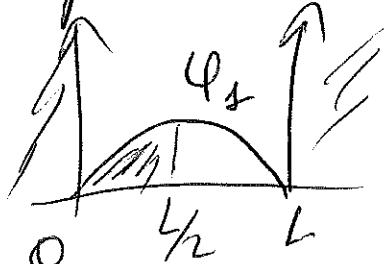
from 0 to $L/2$

a part of the total
prob

$\int_0^{L/2} |\psi_n(x)|^2 dx \leftarrow$ this would be true if

the particle was in an eigenstate $\psi_n(x)$
not in $\psi(x)$

Ex.



(8) If $\Psi(x) = \sum_n c_n \Psi_n(x)$, what is c_n ?

$$x, \varphi_m^*(x), \int \Rightarrow$$

$$\int_0^L (\varphi_m^*(x) \psi(x)) dx = \sum_n c_n \int_0^L \varphi_m^* \varphi_n dx = c_m$$

$$\text{So } C_n = \int_0^L \varphi_n^*(x) \varphi(x) dx = \sqrt{2} \sum_{k=0}^{\infty} \int_0^L \sin \frac{pk\pi}{L} x \varphi(x) dx \stackrel{\text{"\delta_{mn}''}}{=} \sqrt{2} \int_0^L \sin \frac{pn\pi}{L} x \varphi(x) dx$$

Remember that $Q_n = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L}$ only on $[0, L]$

So can't have $\int_{-\infty}^{\infty} \sin \frac{\pi x}{L} \varphi(x) dx$

(c) outcomes \Rightarrow $E_n = \frac{\pi^2 \hbar^2 n^2}{2mL^2}$

of energy measurement

$$P_n = |c_n|^2 = \frac{2}{L} \left| \int_0^L \sin \frac{nx}{L} \psi(x) dx \right|^2$$

note that $\int \int$ shows up only when we measure some quantity which requires presenting $\Psi(x)$ as superposition of eigenstates of the observable we are measuring! Like energy!

(15) $|^3\text{He}$
not show
up when
we ask
where
the particle is)