

Worksheet #2

Wednesday, January 7, 2026

Name:

Questions (5 pts):

Consider a particle in an infinite potential well ($V = 0$ for $0 < x < L$ and $V = \infty$ elsewhere). As you know, the eigenfunctions of the Hamiltonian for this system are given by (at $0 < x < L$)

$$\varphi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{\pi n x}{L}\right)$$

The particle is in a state described by some (normalized) wave function $\Psi(x)$.

Write down the integrals you would need to take to calculate the following:

- (a) The probability of finding the particle somewhere between 0 and $L/2$
- (b) The coefficients c_n if you present $\psi(x)$ as a superposition of eigenfunctions $\varphi_n(x)$,
i.e. $\psi(x) = \sum_n c_n \varphi_n(x)$
- (c) **If you have time:** You make a measurement of energy. What are the possible outcomes of the measurement? How do you decide which outcomes are likely or unlikely?