Welcome to this webpage!
Syllabus
Homework assignments:
Note that late HW is not accepted!
Monthly HW assignments (collected):
HWI:1.3(23), 1.4 (14), 1.5 (17), 1.6 (27), 1.6(34) .
HWII: 2.1 (35a, Hint: You are allowed to use the result of ex1.6#29a without solving that problem), 2.2(14), 2.4(17), 2.5 (7), 3.2 (14, Also: prove that the inclusion in part a is not strict by providing an example. Hint: Again use the result of ex1.6#29a).
HWIII: 5.1(23. Note 1: you need to first solve 5.1 #22 which is a weekly HW problem. Note 2: If you solve this problem, you have just proved the Cayley-Hamilton theorem in the special case of a diagonalizable linear operator. In Sec 5.4, which we will skip, it is shown that this result remains valid if T is not diagonalizable.)
5.2 (13), 6.1(15), 6.2 (16), 6.3 (12) .
Weekly HW assignments (not collected):
Wk 2 (ends Fr 1/18): 1.4 (11,12,13,15), 1.5(6,9,14,15,16,18,19) .
Wk 3 (ends Fr 1/25): read+understand proof of Corollary 2 on p47, 1.6(2c,6,7,15,22,23,32) (MLK Day Mon 1/21).
Wk 4 (ends Fr 2/1): 2.1 (6,9,15,24,28,read+understand proof of Theorem 2.6, p72 and the Corollary on p 73), (HW I due on Wed 1/30).
Wk 5 (ends Fr 2/8): 2.2(4,10,11,13) (Ex I on Fr 2/8; review on Wed 2/6).
Wk 6 (ends Fr 2/15): 2.3(3,4,10,11), reading assignments in section 2.3: proofs of Thm 2.10,2.12,2.15.
Wk 7 (ends Fr 2/22): 2.4(2f,5,6,14,19,23).
Wk 8 (ends Fr 3/1): , 2.5(2c,3b,9,10), 3.1(8,12), 3.2(5f/g,6d,17, 18,19,20).
Wk 9 (ends Fr 3/8): (Spring Break).
Wk 10 (ends Fr 3/15): 3.3(2c/d,3c/d 5,6,7d,9)(HW II due on Wed 3/13).
Wk 11 (ends Fr 3/22): 4.1(2b,3c),4.2(5,9,18),5.1(2b/c) (Ex II on Fr 3/22; review on Wed 3/20).
Wk 12 (ends Fr 3/29):5.1(3b,4a/e,8,11,15,20,21,22).
Wk 13 (ends Fr 4/5): reading: proofs of lemma and theorem 5.8 on p. 267, 5.2 (2b/e,3d,8,11,12), 6.1(8b,11,12).
Wk 14 (ends Fr 4/12):6.1(13,17,18,19,24d,26), 6.2(2g/i,6,15,19)
Wk 15 (ends Fr 4/19): 6.3(2c,8,10,11,21).
Wk 16 (ends Fr 4/26): ( Review on Tue 4/23, Ex III on Wed 4/24) (HW III due on Wed 4/24) .