## Exam 2: MAP 4015*

October 26, 2012

## Name:

This is a closed book exam and the use of formula sheets or calculators is not allowed.

1. Let $\beta$ be an ordered basis of a finite-dimensional vector space $V$, and let $T: V \rightarrow W$ be an isomorphism. Prove that $T(\beta)$ is a basis of $W$.
2. (i) Let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be linear transformations on finite dimensional vectorspaces $V$ and $W$ respectively. Prove that

$$
\operatorname{rank}(U T) \leq \operatorname{rank}(U)
$$

(ii) Let $A \in M_{m \times n}(F)$ and $B \in M_{n \times p}(F)$. Use (i) to prove that:

$$
\operatorname{rank}(A B) \leq \operatorname{rank}(A)
$$

3. Compute the rank of the following matrix, and determine its inverse-if the inverse exists:

$$
A=\left(\begin{array}{ccc}
0 & -2 & 4 \\
1 & 1 & -1 \\
2 & 4 & -5
\end{array}\right)
$$

4. (i) Use Gaussian elimination to find the reduced row echelon form of the following matrix:

$$
A=\left(\begin{array}{ccccc}
2 & 0 & 3 & 0 & -4 \\
3 & -4 & 8 & 3 & 0 \\
1 & -1 & 2 & 1 & -1 \\
-2 & 5 & -9 & -3 & -5
\end{array}\right)
$$

(ii) Use the result from part (i) to find a basis for $R\left(L_{A}\right)$, the range of $L_{A}$.

[^0]
[^0]:    *Instructor: Patrick De Leenheer.

