Exam 1: MAP 4015*

September 21, 2012

Name:

This is a closed book exam and the use of formula sheets or calculators is not allowed.

1. Let V be a vector space of dimension n. Prove that any linearly independent subset of V that contains exactly n vectors, is a basis for V. (Note: Make sure to precisely state, but not prove, any auxiliary result you use to prove this result.)
2. Let S be a subset of $M_{n \times n}(\mathbb{R})$ consisting of the so-called tri-banded matrices, defined as follows:

$$
S=\left\{A \in M_{n \times n}(\mathbb{R}) \mid A_{i j}=0 \text { if }|i-j|>1 \text { for all } 1 \leq i \leq n \text { and } 1 \leq j \leq n\right\}
$$

Prove that S is a subspace of $M_{n \times n}(\mathbb{R})$ and find a basis for S. What is the dimension of S ?
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Find a formula for $T(a, b)$ where T represents the projection of the point with coordinates (a, b) on the y-axis along the line $L=\{(s, s) \mid s \in \mathbb{R}\}$. Include a figure of this projection, clearly showing the points (a, b) and $T(a, b)$, and the line L.
Show that T is linear.
Determine $N(T)$ and $R(T)$.
State and verify the Dimension Theorem for T.
Is T onto? Is it 1 -to- 1 ?
4. Show that a subset W of a vector space V is a subspace of V if and only if $\operatorname{span}(W)=W$.

[^0]
[^0]: *Instructor: Patrick De Leenheer.

