Exam 3: MAP 4015*

December 5, 2012

Name:

This is a closed book exam and the use of formula sheets or calculators is not allowed.

1. Let

$$
A=\left(\begin{array}{ll}
1 & a \\
a & 1
\end{array}\right)
$$

where a is a real parameter. Find a closed-form expression for A^{n}, where n is an arbitrary positive integer.
2. Let $A \in M_{n \times n}(\mathbb{R})$ be an invertible matrix with characteristic polynomial $f(t)=(-1)^{n} t^{n}+$ $a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}$. Show that $a_{0} \neq 0$, and that

$$
A^{-1}=-\frac{1}{a_{0}}\left((-1)^{n} A^{n-1}+a_{n-1} A^{n-2}+\cdots+a_{1} I_{n}\right)
$$

3. A matrix $A \in M_{n \times n}(\mathbb{R})$ is said to be orthogonal if:

$$
A A^{t}=I_{n}
$$

Show that if A is orthogonal, then $\operatorname{det}(A)$ can only take two possible values. What are these values?
4. Let $T: V \rightarrow V$ be a linear operator and $\operatorname{dim}(V)<\infty$. Suppose that W is a T-invariant subspace of V. Prove that the characteristic polynomial of T_{W} divides the characteristic polynomial of T.
[Recall that T_{W} is the restriction of T to W, and thus that $T_{W}: W \rightarrow W$ is a linear operator on W.]

[^0]
[^0]: *Instructor: Patrick De Leenheer.

