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Abstract

In now classic work, David Kendall (1966) recognized that the Yule process and Pois-
son process could be related by a (random) time change. Furthermore, he showed that the
Yule population size rescaled by its mean has an almost sure exponentially distributed limit as
t → ∞. In this note we introduce a class of coupled delayed continuous time Yule processes
parameterized by 0 < α ≤ 1 and find a representation of the Poisson process as a delayed Yule
process at delay rate α = 1/2. Moreover we extend Kendall’s limit theorem to include a larger
class of positive martingales derived from functionals that gauge the population genealogy.
Specifically, the latter is exploited to uniquely characterize the moment generating functions
of distributions of the limit martingales, generalizing Kendall’s mean one exponential limit. A
connection with fixed points of the Holley-Liggett smoothing transformation also emerges in
this context, about which much is known from general theory in terms of moments, tail decay,
and so on.

1 Introduction
The basic Yule process Y = {Yt : t ≥ 0} is a continuous time branching process starting from a
single progenitor in which a particle survives for a mean one, exponentially distributed time before
being replaced by two offspring independently evolving in the same manner. Yt represents the size
of the population of particles at time t ≥ 0, starting from Y0 = 1. The basic Poisson process
N = {Nt : t ≥ 0} is another continuous time Markov process in which a particle survives for a
mean one, exponentially distributed time before being replaced by a single particle that evolves in
the same manner. The shift Nt + 1 represents the number of replacements that have occurred by
time t ≥ 0, N0 = 0. The multiplicative (geometric) growth of the process Y is in stark contrast to
the additive growth of N .

Considerations of evolutionary processes, to be referred to as delayed Yule processes, arise
somewhat naturally in the probabilistic analysis of quasi-linear evolution equations such as in-
compressible Navier-Stokes equations, and complex Burgers equation by probabilistic methods
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originating with Le Jan and Sznitman [4]. In particular, considerations of non-uniqueness and/or
explosion problems in [1] for this framework prompted the present considerations. However this
paper has a purely probabilistic focus and does not depend on such motivations. In fact, the prob-
abilistic framework may also be of interest in the context of evolutionary biological processes.

The principal results are extensions of the aforementioned theorems of Kendall (see [3]). In par-
ticular, a key result is the representation of the Poisson process as a delayed Yule process at delay
rate α = 1/2 provides an exact coupling of the two processes through a binary tree-indexed family
of i.i.d. exponential random variables defined on a probability space (Ω,F , P ). Secondly, com-
plete criteria for the uniform integrability of positive martingales derived from a family of gauges
of the genealogy of the Yule process, including cardinality, is also given. Once this is established
the exact limit distribution is identified for these uniformly integrable martingales as unique (mean
one) fixed points of the Holley-Liggett smoothing operator [2]. This characterization generalizes
Kendall’s mean one exponential limit in the case the gauge is cardinality of the population; the
latter limit distribution is the Gamma distributed fixed point solution corresponding to the uniform
(Beta) smoothing factor in [2]. The characterization of the uniformly integrable martingale limits
as fixed points to a smoothing transformations has numerous implications on the more detailed
structure of the limit; e.g., see [5] for more general theory and results on the nature of fixed points
of smoothing recursions. As an illustration, simple conditions are noted for the existence of finite
moments of the limit martingale. From the perspective of delayed Yule processes as continuous
time Markov processes it is shown that α = 1/2 is a critical transition value between bounded and
unbounded infinitesimal generators defining the α-delayed Yule processes for 0 < α ≤ 1.

2 Delayed Yule Process
To begin, consider the modification of the Yule process given by successively halving the previous
branching frequencies, i.e., doubling the mean holding time of particles of each generation. That
is, let {Tv : v ∈ T = ∪∞k=0{1, 2}k}, with {1, 2}0 = {θ}, be a binary, tree-indexed family of i.i.d.
mean one exponentially distributed random variables rooted at a single progenitor θ, and define

V ( 1
2
)(t) =

{
v ∈ T :

|v|−1∑
j=0

(1/2)−jTv|j ≤ t <

|v|∑
j=0

(1/2)−jTv|j

}
, t ≥ 0,

where |θ| = 0, and |v| = | < v1, . . . , vk > | = k denotes the height of vertex v ∈ T. Also
v|j =< v1, . . . , vj > is the restriction of v to generation j ≤ k. Also, by convention,

∑−1
j=0 = 0.

Observe that

Yt = #V (1)(t) =
{
v ∈ T :

|v|−1∑
j=0

Tv|j ≤ t <

|v|∑
j=0

Tv|j

}
, t ≥ 0,

defines the basic Yule process; throughout #V will denote the cardinality of a set V .
Let τk, k = 1, 2, . . . be the increasing sequence of jump times of the 1

2
-delayed Yule process

defined by
Nt = #V ( 1

2
)(t)− 1, t ≥ 0.
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Lemma 2.1 (Key Coupling Lemma 1). For arbitrary k ≥ 1, conditionally given τ0 = 0, τ1, . . . , τk−1,
τk − τk−1 is exponentially distributed with mean one. In particular, τk − τk−1, k = 1, 2, . . . is an
i.i.d. sequence.

Proof. First observe that τ1 = Tθ, and thus P (τ1 > t) = e−t, t ≥ 0. Next P (τ2 − τ1 > t) =
P (2T (1) ∧ 2T (2) > t) = e−

t
2 e−

t
2 = e−t. More generally for k ≥ 2, an induction argument

shows that given τ1, . . . , τk−1, τk−τk−1 is the minimum of k independent exponentially distributed
random variables whose intensities add to one. To see this, for k ≥ 2, on [τ1 ≤ t], express the

process V ( 1
2
)(t), t ≥ τ1, as the disjoint union of two independent, sets of vertices V

( 1
2
)

(j) (t−Tθ), t >
0, j = 1, 2, Then τk−τk−1 is the minimum of the left and right independent jump times. In view of
the scaling of the holding times by a factor of 2 in successive generations in the definition of V ( 1

2
),

it follows by induction that this left-right minimum is the minimum of two independent exponential
holding times with intensity 1

2
, respectively, and therefore exponential with unit intensity.

Theorem 2.1. The stochastic process Nt = #V ( 1
2
)(t) − 1, t ≥ 0, is a Poisson process with unit

intensity.

Proof. This is a direct consequence of the key coupling lemma1, making N a process with station-
ary independent increments, N0 = 0, and P (Nt = k) = P (τk ≤ t < τk+1) = tk

k!
e−t, t ≥ 0, k =

0, 1, 2, . . . .

Replacing 1
2

by a parameter α ∈ (0, 1] in successive generations of the basic Yule process
defines the α-delayed Yule process. Namely,

V (α)(t) =
{
v ∈ T :

|v|−1∑
j=0

α−jTv|j ≤ t <

|v|∑
j=0

α−jTv|j

}
, t ≥ 0.

Accordingly, V (α) is a continuous time jump Markov process taking value in the (countable)
space E of evolutionary sets defined inductively by V ∈ E if and only if V is a finite subset of
T = ∪∞n=0{1, 2}n, such that

V =

{
{θ} if #V = 1,
W\{w} ∪ {< w1 >,< w2 >} for some W ∈ E , #W = #V − 1, w ∈ W, else.

Although one may check that V (α) is a Markov process on E , the functional #V (α) is not
generally Markov; exceptions being α = 1

2
, 1. When α = 1, #V (α) is the classical Yule process,

and so it is obviously Markov, while the case α = 1
2

is made special in a way already exploited in
the proof of the Key Coupling Lemma 2.1. The Markov property is a consequence of the following
lemma that can be obtained by a simple induction argument left to the reader.

Lemma 2.2 (Key Coupling Lemma 2). For any V ∈ E one has∑
v∈V

(1/2)|v| = 1.
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In addition to cardinality, letting β > 0, the following functionals serve to gauge the genealogy
of the evolution:

aβ(V ) =
∑
v∈V

β|v|, V ∈ E . (2.1)

By the Key Coupling Lemma 2.2, one has that a1/2(V ) = 1 for all V ∈ E . The cardinality #V is
covered by β = 1, and the following provides a generalization of Kendall’s classic limit theorem
to other gauges of the genealogical structure of the Yule process.

Theorem 2.2. For each β ∈ (0, 1], Aβ(t) = e−(2β−1)taβ(V (1)(t)), t ≥ 0, is a positive martingale.
Moreover, Aβ is uniformly integrable if and only if β ∈ (βc, 1] where βc ≈ 0.1866823 is the unique
in (0, 1] solution to

βc ln βc = βc −
1

2
. (2.2)

Proof. Let mβ(t) = Eaβ(V (1)(t)), t ≥ 0. First, let us check that

mβ(t) = e(2β−1)t, t ≥ 0. (2.3)

For this write

aβ(V (1)(t)) = 1[Tθ > t] + 1[Tθ ≤ t]β{aβ(V (1)+(t− Tθ)) + aβ(V (1)−(t− Tθ))}, (2.4)

where V (1)±(t−Tθ) are conditionally independent copies of V (1) given Tθ. Taking expected values
one has

mβ(t) = e−t + 2β

∫ t

0

e−smβ(t− s)ds, mβ(0) = 1.

The expression (2.3) now follows.
To establish the martingale property, let 0 ≤ s < t and write

aβ(V (1)(t)) =
∑

w∈V (1)(s)

∑
v∈V (1),w(t−s)

β|w|β|v|,

where V (1),w are the delayed Yule processes rooted at w ∈ V (1)(s). Note that the respective
processes V (1),w, w ∈ V (1)(s), are conditionally independent given V (1)(s), and therefore

E[e−(2β−1)taβ(V (1)(t))|Fs] = e−(2β−1)tmβ(t− s)aβ(V (1)(s)) = e−(2β−1)saβ(V (1)(s)).

Thus Aβ is a positive martingale. So, by the martingale convergence theorem, it follows that

Aβ(∞) = lim
t→∞

e−(2β−a)taβ(V (1)(t)),

exists almost surely. Moreover, from (2.4) one has the distributional recursion

Aβ(∞) = βe−(2β−1)Tθ(A+
β (∞) + A−β (∞)). (2.5)

Let us first investigate parameters β ∈ (0, 1] such that Aβ(∞) = 0 almost surely. For this let
h ∈ (0, 1) and observe that, since (x+ y)h ≤ xh + yh and E(e−δTθ) = 1/(1 + δ), (2.5) yields

EAhβ(∞) ≤ 2βh
1

1 + (2β − 1)h
EAhβ(∞), 0 < h < 1.
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Thus, if Aβ(∞) > 0 with positive probability, then

2βh

1 + (2β − 1)h
≥ 1, 0 < h < 1. (2.6)

By comparing the functions φ(h) = βh and ψ(h) = 1 + (2β − 1)h on h ∈ [0, 1], it follows that
(2.6) holds if and only if

β ≥ βc,

where βc ≈ 0.1866823 is the unique solution on (0, 1] to the equation 2βc ln βc = (2βc − 1). Then
β < βc implies Aβ(∞) = 0 almost surely.

For the converse, i.e., uniform integrability of the positive martingale {Aβ(t) : t ≥ 0}, we
will use an inequality from [6], attributed there to B. Chauvin and J. Neveu, especially suited for
such problems. For present purposes, if 1 < p ≤ 2, and X1, X2 ∈ Lp(Ω,F , P ) are independent,
positive random variables, then

vp(X1 +X2) ≤ vp(X1) + vp(X2), (2.7)

where vp(Xj) = EXp
j − (EXj)

p, j = 1, 2.
By the basic recursion (2.4), one has

EApβ(t) = e−[(2β−1)p+1]t + βp
∫ t

0

e−[(2β−1)p+1]sE(A+
β (t− s) + A−β (t− s))pds. (2.8)

Applying (2.7) and using the submartingale property EApβ(t − s) ≤ EApβ(t), 0 ≤ s ≤ t together
with the fact that EAβ(t− s) = 1, we estimate

E(A+
β (t− s) + A−β (t− s))p = vp(A

+
β (t− s) + A−β (t− s)) + (E(A+

β (t− s)) + A−β (t− s))p

≤ vp(A
+
β (t− s)) + vp(A

−
β (t− s)) + 2p(E(Aβ(t− s)))p

≤ 2EApβ(t− s) + 2p ≤ 2EApβ(t) + 2p,

Thus, (2.8) yields

EApβ(t) ≤ e−[(2β−1)p+1]t +
(2EApβ(t) + 2p)βp

(2β − 1)p+ 1
,

which implies

(2β − 1)p+ 1− 2βp

(2β − 1)p+ 1
EApβ(t) ≤ e−[(2β−1)p+1]t +

(2β)p

(2β − 1)p+ 1
, t ≥ 0.

In particular, uniform integrability follows under the condition that for some p ∈ (1, 2],

(2β − 1)p+ 1− 2βp > 0.

Equivalently, β > βc where, as before, βc – the solution of (2.2).
To complete the proof requires consideration of the case β = βc. If, for sake of contradiction,

one assumes uniform integrability then, as is elaborated in the proof of the Proposition 2.1 below,
the distribution of Aβc(∞) provides a mean one fixed point to the Holley-Liggett smoothing map,
see [2], where it is shown that there is not a mean one fixed point at βc.
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For β ∈ [0, 1], define the moment generating function

ϕβ(r) = Ee−rAβ(∞), r ≥ 0,

where Aβ(∞) = limt→∞Aβ(t). Note that by Proposition 2.2,

ϕ′β(0) = 0 if β < βc and ϕ′β(0) = −1 if β > βc

Also define a probability measure νβ on Sβ where Sβ = [0, β] for β > 1/2, and Sβ = [β,∞)
for 0 < β < 1/2, and

ν 1
2
(ds) = δ 1

2
(ds), νβ(ds) =

(s/β)
1

2β−1

|2β − 1|
ds

s
, β 6= 1

2
. (2.9)

Proposition 2.1. For β > βc, ϕβ is uniquely determined within the class of probability distribu-
tions on [0,∞) whose moment generating function satisfies

ϕβ(r) =

∫
Sβ

ϕ2
β(rs)νβ(ds), r ≥ 0, (2.10)

such that ϕβ(0) = 1, ϕ′β(0) = −EAβ(∞). Equivalently, ϕβ is uniquely determined by the delayed
differential equation

ϕ′β(r) =
1

r

1

2β − 1
ϕ2
β(βr)− 1

r

1

2β − 1
ϕβ(r), β ∈ [0, 1] \

{1

2

}
, (2.11)

and the given initial conditions.

Proof. First we will show that (2.10) holds for β ∈ [0, 1]. When β = 1/2, by (2.5),

ϕ 1
2
(r) = ϕ2

1
2
(r/2), (2.12)

and thus (2.10) holds with ν1/2 – the Dirac measure as in (2.9). For β 6= 1/2, using the stochastic
recursion (2.5), we obtain:

ϕβ(r) = E
(
e−rAβ(∞)

)
= E

(
exp

[
−rβe−(2β−1)Tθ

(
A+
β (∞)) + A−β (∞)

)])
=

∞∫
0

e−t E exp
[
−rβe−(2β−1)t

(
A+
β (∞)) + A−β (∞)

)]
dt

=

∞∫
0

e−tϕ2
β

(
rβe−(2β−1)t

)
dt.

Now (2.10) follows by the change of variables s = βe−(2β−1)t.
For β > βc, in view of the uniform integrality (see Theorem 2.2) one has EAβ(∞) = 1, and

we may use early results of [2] on smoothing transformations. Specifically, it is simple to check
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that for βc < β ≤ 1, the random variable Wβ = 2βe−(2β−1)Tθ has mean one (in fact, 1
2
Wβ is a

re-scaling of the distribution νβ), while the recursion (2.5) takes form

Aβ(∞) = Wβ

(1

2
A+
β (∞) +

1

2
A−β (∞)

)
,

of a Holley-Liggett smoothing transformation within the framework of Theorem 7.1 in [2]. Ac-
cordingly, the distribution of Aβ(∞) is the unique positive mean one solution to the stochastic
recursion provided

E(Wβ lnWβ) < ln 2.

A direct calculation shows that E(Wβ lnWβ) = ln(2β) − 2β−1
2β

, and thus the inequality above is
satisfied if and only if β > βc.

To establish (2.11) we may use (2.10), as follows (noting that the implied differentiability is a
property of a moment generating function of a probability distribution on [0,∞)):

ϕ′β(r) =

∫
Sβ

d

dr
ϕ2
β(rs)νβ(ds) =

1

r

∫
Sβ

d

ds
ϕ2
β(rs) s νβ(ds).

Now use (2.9) and integrate by parts. In the case β < 1/2 we get:

ϕ′β(r) =
1

r

∞∫
β

d

ds
ϕ2
β(rs)

(s/β)
1

2β−1

1− 2β
ds =

1

r
ϕ2
β(rs)

(s/β)
1

2β−1

1− 2β

∣∣∣∣∣
∞

s=β

+
1

r

∞∫
β

ϕ2
β(rs)

(s/β)
1

2β−1

(1− 2β)2
ds

s

= −1

r

1

1− 2β
ϕ2
β(βr) +

1

r

1

1− 2β
ϕβ(r),

which implies (2.11) for β ∈ [0, 1/2). The case β ∈ (1/2, 1] is treated analogously.

Remark 2.1. While the martingale limit is clearly a fixed point of the Holley-Liggett smoothing
transformation for any β ∈ (0, 1], the proof of uniform integrability is essential to the identification
of the critical parameter βc for a positive martingale limit since fixed point uniqueness theorem is
within the class of mean one probability distributions on [0,∞). Once this is achieved then the
existing theory of fixed points of smoothing transformations as given in [2], [5], among others,
can be applied to discern more about the non-exponential cases of the limit distributions. As noted
in [2] for particular Beta distributions of W , the fixed point distribution is a Gamma distribution.
This includes the case of Kendall’s theorem, [3], for β = 1 in which W is uniform on (0, 1) and
the martingale limit has a mean-one exponential distribution as given below.

Corollary 2.1 (Kendall’s theorem). A1(t) = e−t Yt, t ≥ 0, is a uniformly integrable martingale,
and A1(∞) = limt→∞A1(t) is exponentially distributed with mean one.

Proof. It is easy to see that the mean one exponential moment generating function 1/(1 + r)
satisfies (2.10) in case β = 1. Now the fact that the exponential is indeed the distribution of
A1(∞) follows from the uniqueness statement of Proposition 2.1.
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Remark 2.2. One can also obtain Kendall’s result directly from (2.11). Indeed, when β = 1 we
have

(rϕ1(r))
′ = ϕ2

1(r), ϕ1(0) = 1, ϕ′1(0) = −1,

The non-zero solutions of the equation above can be obtained explicitly as

ϕ1(r) =
1

1 + c0r
,

while by the initial data, c0 = 1, proving that the mean one exponential moment generating func-
tion is the only solution, and thus implying Kendall’s theorem stated in Corollary 2.1.

The following result shows that for βc < β < 1/2, Aβ(∞) has heavy tails. As remarked
earlier, this and more on the nature of the martingale limit distribution are also available from
general theory, e.g., see [5]. However one may also give the following self-contained argument
based on (2.11).

Proposition 2.2. For any β ∈ (βc, 1/2), there exists pβ ≥ 2 such that E(Apβ(∞)) = ∞ for all
p ≥ pβ .

Proof. Note that the finite moments of order k ∈ N satisfy:

mk = (−1)kϕ
(k)
β (0),

and consequently, using (2.11) and the fact that m0 = m1 = 1 we obtain

(
(2β − 1)k − 2βk + 1

) mk

k!
= βk

k−1∑
j=1

mj

j!

mk−j

(k − j)!
, k ≥ 2.

Since Yβ(∞) ≥ 0, we have mk > 0 for all k, and thus

(2β − 1)k − 2βk + 1 > 0 for all k ≥ 2.

Note that the above condition fails for big enough k if β < 1/2, implying that the higher-order
moments of Yβ must be infinite.

3 Infinitesimal Generator and another Critical Value for the
Delayed Yule Process

Give E the discrete topology and let C0(E) denote the space of (continuous) real-valued functions
f : E → R that vanish at infinity; i.e., given ε > 0, one has |f(V )| < ε for all but finitely many
V ∈ E . The subspace C00(E) ⊂ C0(E) ⊂ L

∞
(E) of functions with compact (finite) support is

clearly dense in C0(E) for the uniform norm.
The construction at the outset of the coupled stochastic processes V (α), 0 < α ≤ 1, provides

corresponding semigroups of positive linear contractions {T (α)
t : t ≥ 0} defined by

Ttf(V ) = EV f(V (α)(t)), t ≥ 0, f ∈ C0(E),
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with the usual branching process convention that given V (α)(0) = V ∈ E , V (α)(t) is the total
progeny independently produced by single progenitors at each v ∈ V . In fact, one may consider
the semigroup as defined on L∞(E) ⊃ C0(E).

The usual considerations imply that the infinitesimal generator (L(α),Dα) of V (α) is given on
C00(E) via

L(α)f(V ) =
∑
v∈V

α|v|{f(V v)− f(V )}, f ∈ C00(E),

where
V v = V \{v} ∪ {< v1, v2 >}, v ∈ V.

One may naturally pursue the computation of a core for L(α), however for the present purposes the
above is sufficient to establish the following distinct role of α = 1

2
as a critical parameter.

Proposition 3.1. (L(α),Dα), Dα ⊂ L
∞

(E) – the domain of L(α), is a bounded linear operator if
and only if α ≤ 1

2
.

Proof. The sufficiency follows from the key coupling lemma 2, since for α ≤ 1
2

one has the bound∑
v∈V α

|v| ≤
∑

v∈V 2−|v| = 1, V ∈ E . In particular, for f ∈ C0(E),

|L(α)f(V )| ≤ 2 sup
W∈E
|f(W )|, V ∈ E .

On the other hand, for α > 1
2
, define a sequence of functions fn ∈ C00(E) by

fn(V ) = h(V )1[h(V )≤n], n = 1, 2, . . . ,

where h(V ) = max{|v| : v ∈ V }, V ∈ E . Then for full binary branching h(V ) = n, |V | = 2n.
Thus ‖fn‖∞ = n, and for such V ,

|L(α)fn(V )| =
∑
v∈V

αn = (2α)n.

In particular
|L(α)fn(V )|
‖fn‖∞

=
(2α)n

n
→∞ as n→∞ for α >

1

2
.

Remark 3.1. Although aβ /∈ C0(E) for any β ∈ (0, 1], the following formal calculation for
α ∈ (0, 1],

L(α)aβ(V ) = (2β − 1)aαβ(V ), V ∈ E ,

is intriguing from the perspective of precise identification of the generator. In particular, aβ is
formally a positive eigenfunction of L(1) with non-positive eigenvalue 2β − 1 < 0 for β < 1

2
as

required for a contraction semigroup of positive linear operators. To make this formal calculation
rigorous obviously requires a modification of the function space beyond the standard choiceC0(E).
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Finally let us conclude by noting a closely related evolution that takes place in sequence space
that may be of interest in other contexts. For V ∈ E , let

gk(V ) = #{v ∈ V : |v| = k}, k = 0, 1, 2, . . . .

Also define an equivalence relation on E by V ∼ W , V,W ∈ E , if and only if gk(V ) = gk(W ) for
all k. Then the space of equivalence classes E/ ∼ is in one-to-one correspondence with a subset of
the sequence space c00(Z+) ⊂ `1(Z+) defined inductively as follows: n = (n0, n1, . . . ) ∈ c00(Z+)
belongs to the space E0 of evolutionary sequences if either n = (1, 0, . . . ) or, otherwise, there is
an m ∈ E0 ⊂ c00(Z+) such that m = n(k) := (n0, n1, . . . , nk − 1, nk+1 + 2, nk+2, . . . ) for some
k ≥ 0 such that nk ≥ 1. Note that

∑∞
j=0 nj =

∑∞
j=0mj − 1. For 0 < α ≤ 1, the equivalence

relation induces N (α) = {N (α)(t) : t ≥ 0} as the continuous time jump Markov process on E0
with generator given for f ∈ C00(E0) by

L̃(α)f(n) =
∞∑
k=0

nkα
k(f(n(k))− f(n)), n ∈ E0.
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