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Division Algebras

Real Numbers

R

Complex Numbers

C = R⊕ Ri

z = x + yi

i2 = − 1
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Real Numbers

R

Quaternions

H = C⊕ Cj

q = (x + yi) + (r + si)j

k

j i

Complex Numbers

C = R⊕ Ri

z = x + yi

i2 = j2 = − 1
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Real Numbers

R

Quaternions

H = C⊕ Cj

q = (x + yi) + (r + si)j

k

j i

Complex Numbers

C = R⊕ Ri

z = x + yi

Octonions

O = H⊕Hℓ

k

l
j i

il

kl

jl

i2 = j2 = ℓ2 = − 1
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Real Numbers

R

Quaternions

H = C⊕ Cj

q = (x + yi) + (r + si)j

k

j i

Complex Numbers

C = R⊕ Ri

z = x + yi

Octonions

O = H⊕Hℓ

Split Octonions

O
′ = H⊕HL k

l
j i

il

kl

jl

I 2 = J2 = −U, L2 = +U
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Split Division Algebras

I 2 = J2 = −U, L2 = +U

Signature (4, 4):
x = x1U + x2I + x3J + x4K + x5KL+ x6JL+ x7IL+ x8L =⇒

|x |2 = xx = (x21 + x22 + x23 + x24 )− (x25 + x26 + x27 + x28 )

Null elements:
|U ± L|2 = 0

Projections:
(

U ± L

2

)2

=
U ± L

2

(U + L)(U − L) = 0
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Lie Groups & Lie Algebras

Lie Group:

SO(3) =







Rz =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1



 ,Rx ,Ry







Lie Algebra:

so(3) =

〈

rz =





0 −1 0
1 0 0
0 0 0



 , rx , ry

〉

Properties:

R† = R−1, rz =
dRz

dθ

∣

∣

∣

∣

θ=0

, r †z = −rz [rx , ry ] = rz
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Classification

Theorem (Cartan–Killing)

The only (simple) Lie algebras are (real forms of) so(n), su(n),
sp(n), together with 5 exceptional cases: g2, f4, e6, e7, e8.

These are all unitary algebras!
so(n) ∼= su(n,R)
su(n) ∼= su(n,C)
sp(n) ∼= su(n,H)
The exceptional cases are matrix algebras involving O
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The Tits–Freudenthal Magic Square

Freudenthal (1964), Tits (1966):

R C H O

R
′ su(3,R) su(3,C) su(3,H) f4

C
′ sl(3,R) sl(3,C) sl(3,H) e6(−26)

H
′ sp(6,R) su(3, 3,C) d6(−6) e7(−25)

O
′ f4(4) e6(2) e7(−5) e8(−24)

Dray & Manogue (2010):
F4

∼= SU(3,O), E6(−26)
∼= SL(3,O) using SL(2,O) ∼= Spin(9, 1)

Dray, Manogue, & Wilson (2014): E7
∼= Sp(6,O)

Wilson, Dray, & Manogue (2023): E8
∼= SU(3,O′ ⊗O)

The algebras in the 3× 3 magic square are su(3,K′ ⊗K).
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Spinors!

The 3 × 3 structure is broken to 2 × 2.

P =

(

P θ

θ† n

)

∈ e8 M =

(

M 0

0 1

)

∈ E8

P 7−→ MPM−1 =⇒ P 7−→ MPM−1, θ 7−→ Mθ

P 7−→ [A,P] =⇒ P 7−→ [A,P], θ 7−→ Aθ

(A = Ṁ; A = Ṁ)

Idea: Adjoint and spinor actions at same time!
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2 × 2 Magic Square

R C H O

R
′ so(2) so(3) so(5) so(9)

C
′ so(2, 1) so(3, 1) so(5, 1) so(9, 1)

H
′ so(3, 2) so(4, 2) so(6, 2) so(10, 2)

O
′ so(5, 4) so(6, 4) so(8, 4) so(12, 4)

d = 3, 4, 6, 10

(1980s: Corrigan, Evans, Fairlie, Manogue, Sudbery)

(1990s: Manogue & Schray)

Unified Clifford algebra description using division algebras

[Kincaid (MS 2012), Kincaid and Dray (MPLA 2014),

Dray, Huerta, & Kincaid (LMP 2014)]
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Signature matters!

Lorentz Lie algebra: so(3, 1) [detP = −(−t2 + x2 + y2 + z2)]

P =

(

t + z x − iy

x + iy t − z

)

= t σt + x σx + y σy + z σz

group: P 7−→ MPM† algebra: P 7−→ AP + PA†
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Signature matters!

Lorentz Lie algebra: so(3, 1) [detP = −(−t2 + x2 + y2 + z2)]

Vector in C
′ ⊕ C

P =

(

Lt + Uz 1x − iy

1x + iy Lt − Uz

)

= Lt σt + 1x σx + iy (−iσy ) + Uz σz

Rotations (antihermitian!): (so P 7−→ [A,P])

Xi = iσx , X1 = iσy , Di = iσz

Boosts (antihermitian!): (so P 7−→ [A,P])

XL = Lσx , XiL = Lσy , DL = Lσz

so(3, 1) ∼= sl(2,C) ∼= su(2,C′ ⊗ C)Tevian Dray & Corinne Manogue Using Octonions to describe the Standard Model
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Subalgebras

All algebras in both magic squares are subalgebras of e8!
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Subalgebras

All algebras in both magic squares are subalgebras of e8!

e8(−24) = so(12, 4)⊕ 128.
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Subalgebras

All algebras in both magic squares are subalgebras of e8!

e8(−24) = so(12, 4)⊕ 128.

The 128 is a Majorana–Weyl representation of so(12, 4).
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Subalgebras

All algebras in both magic squares are subalgebras of e8!

e8(−24) = so(12, 4)⊕ 128.

The 128 is a Majorana–Weyl representation of so(12, 4).

The 128 contains spinor reps of each 2× 2 algebra.

Tevian Dray & Corinne Manogue Using Octonions to describe the Standard Model



Number Systems
Symmetry

The Standard Model

Lie Algebras
Magic Squares
Decompositions

Subalgebras

All algebras in both magic squares are subalgebras of e8!

e8(−24) = so(12, 4)⊕ 128.

The 128 is a Majorana–Weyl representation of so(12, 4).

The 128 contains spinor reps of each 2× 2 algebra.

so(12, 4) ⊃ so(3, 1)⊕ ...
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Fermions Bosons

Leptons (Dirac spinors) Mediators (Vectors)
e−, µ−, τ− charge = −1 γ u(1)
νe , νµ, ντ charge = 0 W±, Z su(2)

Quarks (Dirac spinors)
u, c , t charge = 2

3 gluons su(3)
d , s, b charge = −1

3

Higgs (scalar)

Generations:
3 copies that differ only by mass
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Dirac Spinors

Solutions of the Dirac equation

Represent leptons and quarks

Two Weyl spinors of opposite chirality
(su(2)L ⊕ su(2)R ∼= so(4))

su(2)L acts only on one chirality for all fermions
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GUTs

Is there a (semi-)simple group that contains
U(1)× SU(2)L × SU(3)?

Common candidates are SU(5) and SO(10).
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Lie algebras are real!
The 3 × 3 structure is broken to 2 × 2.

All representations live in e8!

e8(−24) = so(12, 4)⊕ spinors

so(12, 4) ⊃ so(3, 1)⊕ su(3)⊕ su(2)⊕ u(1)“⊗ C”
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