New Description of e_8 (Wilson et al.)

	\mathbb{R}	\mathbb{C}	H	\bigcirc
\mathbb{R}'	$\mathfrak{so}(3)$	$\mathfrak{su}(3)$	$\mathfrak{su}(3,\mathbb{H})$	\mathfrak{f}_4
\mathbb{C}'	$\mathfrak{sl}(3,\mathbb{R})$	$\mathfrak{sl}(3,\mathbb{C})$	$\mathfrak{sl}(3,\mathbb{H})$	$\mathfrak{e}_{6(-26)}$
\mathbb{H}'	$\mathfrak{sp}(6,\mathbb{R})$	$\mathfrak{su}(3,3)$	$\mathfrak{d}_{6(-6)}$	$\mathfrak{e}_{7(-25)}$
\mathbb{O}'	$\mathfrak{f}_{4(4)}$	$\mathfrak{e}_{6(2)}$	¢ 7(−5)	$\mathfrak{e}_{8(-24)}$

- Everything is 3x3 "matrices" with two "labels"
- Ordinary matrices/commutators in quaternionic cases.
- Generalize commutators for double-labeled diagonal elements.

	\mathbb{R}	\mathbb{C}	\mathbb{H}	0
\mathbb{R}'	$\mathfrak{so}(2)$	$\mathfrak{so}(3)$	$\mathfrak{so}(5)$	$\mathfrak{so}(9)$
\mathbb{C}'	$\mathfrak{so}(2,1)$	$\mathfrak{so}(3,1)$	$\mathfrak{so}(5,1)$	$\mathfrak{so}(9,1)$
\mathbb{H}'	$\mathfrak{so}(3,2)$	$\mathfrak{so}(4,2)$	$\mathfrak{so}(6,2)$	$\mathfrak{so}(10,2)$
\mathbb{O}'	$\mathfrak{so}(5,4)$	$\mathfrak{so}(6,4)$	$\mathfrak{so}(8,4)$	$\mathfrak{so}(12,4)$

Orthogonal Lie Algebras

	\mathbb{R}	\mathbb{C}	\mathbb{H}	0
\mathbb{R}'	$\mathfrak{so}(3)$	$\mathfrak{su}(3)$	$\mathfrak{su}(3,\mathbb{H})$	\mathfrak{f}_4
\mathbb{C}'	$\mathfrak{sl}(3,\mathbb{R})$	$\mathfrak{sl}(3,\mathbb{C})$	$\mathfrak{sl}(3,\mathbb{H})$	$\mathfrak{e}_{6(-26)}$
H'	$\mathfrak{sp}(6,\mathbb{R})$	$\mathfrak{su}(3,3)$	$\mathfrak{d}_{6(-6)}$	${\mathfrak e}_{7(-25)}$
0'	$\mathfrak{f}_{4(4)}$	$\mathfrak{e}_{6(2)}$	$\mathfrak{e}_{7(-5)}$	$\mathfrak{e}_{8(-24)}$

+Spinors

- 2x2 Lie algebras are degree 2 in Clifford algebra.
- 2x2->3x3 adds spinor representations with appropriate Bott periodicity.

Labels

	\mathbb{R}	\mathbb{C}	H	
\mathbb{R}'	$\{1,U\}$	$\{\ldots,k\}$	$\{\ldots,i,j\}$	$\{\ldots,i\ell,j\ell,k\ell,\ell\}$
\mathbb{C}'	$\{\ldots,L\}$			
\mathbb{H}'	$\{\ldots,K,KL\}$			
© ′	$\{,I,IL,J,JL\}$			

Type Structure

$$egin{pmatrix} D & X & -Z^\dagger \ -X^\dagger & \pm D & Y \ Z & -Y^\dagger & 0 \ \end{pmatrix}$$

- Ds must have both labels in the same division algebra. (We don't always write {1, U}).
- Xs, Ys, Zs have one label in each division algebra.

Choices for Octions Models

- lacksquare Everything in real ${\mathfrak e}_8$
 - The minimal representation is the adjoint, so actors and actees are in the same space.
 - Don't complexify, pay attention to signature.
 - Always stay in the Magic Square.
- Prioritize Lorentz, weak, color over generation.
- No gravity.
- Allow Clifford and Jordan algebra structures to emerge from \mathfrak{e}_8 .

Rules of Today's Game

- Pick an entry in the magic square.
- Assign division algebra labels.
- Decompose into smaller entry and centralizer.
- Interpret Ds and Xs as adjoints/bosonic reps.
- Interpret the Ys and Zs as fermionic reps.

Example: $a_{5(-7)}$

	\mathbb{R}	\mathbb{C}	H	
\mathbb{R}'	$\{1,U\}$	$\{\ldots,k\}$	$\{\ldots,i,j\}$	$\{,i\ell,j\ell,k\ell,\ell\}$
\mathbb{C}'	$\{\ldots,L\}$		$a_{5(-7)}$	
\mathbb{H}'	$\{\ldots,K,KL\}$			
© ′	$\{,I,IL,J,JL\}$			

Content of: $\mathfrak{a}_{5(-7)}$

- Adjoint $\mathfrak{so}(5,1)$ (labels $\{U,L,1,i,j,k\}$)

Adjoint
$$\mathfrak{so}(5,1)$$
 (labels $\{U,L,1\}$)
Adjoint $\mathfrak{su}(2)$

$$GS_k = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & k \end{pmatrix}$$

- Adjoint $\mathfrak{so}(1,1)$ $S_L = \begin{pmatrix} L & 0 & 0 \\ 0 & L & 0 \\ 0 & 0 & -2L \end{pmatrix}$
 - \square 2 spinor 8s of $\mathfrak{so}(5,1)$ (labels $\{U \pm L, 1, i, j, k\}$)

Extension: ¢₆₍₋₂₆₎

	\mathbb{R}	\mathbb{C}	H	
\mathbb{R}'	$\{1,U\}$	$\{\ldots,k\}$	$\{\ldots,i,j\}$	$\{,i\ell,j\ell,k\ell,\ell\}$
\mathbb{C}'	$\{\ldots,L\}$		$a_{5(-7)}$	€ ₆₍₋₂₆₎
\mathbb{H}'	$\{\ldots,K,KL\}$			
© ′	$\{,I,IL,J,JL\}$			

Content of: $\mathfrak{e}_{6(-26)}$

- \blacksquare Add labels in \mathbb{H}_{\perp} i.e. $\{i\ell, j\ell, k\ell, \ell\}$
- Lorentz structures inside representations of \mathfrak{a}_5
 - 4 more $\mathfrak{so}(5,1)$ Lorentz vectors with labels in $\mathfrak{so}(4) = \mathfrak{su}(2) \oplus \mathfrak{su}(2)$
 - \blacksquare Double the number of spinors (16) by including those with labels in \mathbb{H}_{\perp}

Rewrite Quaternionic Matrices

$$GS_k = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & k \end{pmatrix}$$

$$egin{aligned} D_{\ell,k\ell} - D_{i\ell,j\ell} \ D_{\ell,i\ell} - D_{j\ell,k\ell} \ D_{\ell,j\ell} - D_{k\ell,i\ell} \end{aligned}$$

$$\mathfrak{so}(4) = \mathfrak{su}(2) \oplus \mathfrak{su}(2)$$

Old

$$D_{\ell,k\ell} - D_{i\ell,j\ell}$$

$$D_{\ell,i\ell} - D_{j\ell,k\ell}$$

$$D_{\ell,j\ell} - D_{k\ell,i\ell}$$

New

$$D_{\ell,k\ell} + D_{i\ell,j\ell}$$

$$D_{\ell,i\ell} + D_{j\ell,k\ell}$$

$$D_{\ell,j\ell} + D_{k\ell,i\ell}$$

Handedness

- ¢₆ is our first example with octonionic content.
- $\mathfrak{so}(4) = \mathfrak{su}(2) \oplus \mathfrak{su}(2)$ all with \mathbb{H}_{+} labels.
- New $\mathfrak{su}(2)$ annihilates the old spinors.
- Old $\mathfrak{su}(2)$ annihilates the new spinors.
- Second Weyl handedness of $\mathfrak{so}(5,1)$ spinors emerges from non-associativity of octonions

Decompositions

$$\mathfrak{so}(p+q) = \mathfrak{so}(p) \oplus \mathfrak{so}(q) \oplus p \times q$$

The spinors decompose appropriately.

Extension: $\mathfrak{e}_{8(-24)}$

	\mathbb{R}	\mathbb{C}	H	
\mathbb{R}'	$\{1,U\}$	$\{\ldots,k\}$	$\{\ldots,i,j\}$	$\{\ldots,i\ell,j\ell,k\ell,\ell\}$
\mathbb{C}'	$\{\ldots,L\}$			
\mathbb{H}'	$\{\ldots,K,KL\}$			
© ′	$\{,I,IL,J,JL\}$			e _{8(−24)}

Content of: $e_{8(-24)}$

- $\overline{\mathfrak{e}_8} = \mathfrak{e}_6 \oplus \mathfrak{sl}(3,\mathbb{R}) \oplus 27 \times 3 \oplus \overline{27} \times \overline{3}$
- Add Labels $\{I \pm IL, J \pm JL, K \pm KL\}$
- 27 is literally a Jordan algebra times a null label => all the old work about \mathfrak{e}_6 acting on Jordan algebras applies straightforwardly.

Take Home Messages

If you break \mathfrak{e}_8 in these ways:

- \square \mathfrak{a}_5 gives chirality, right-handed leptons, and $\mathfrak{su}(2)$
- \mathfrak{e}_6 adds left-handed leptons, another $\mathfrak{su}(2)$ and potential weak mediators.
- \mathfrak{e}_8 adds colored $\left(3+\overline{3}\right)$ Jordan 27s to build quarks/baryons with potentially testable properties.
- $Arr v_7$ shows how to build determinants of the 27 representations of $arepsilon_6$ using color.