

OCTONIONS IN MATHEMATICA

1. GETTING STARTED

This document briefly describes the *Mathematica* packages written by Corinne Manogue and Tevian Dray for working with octonions.

- **Start Mathematica.**

For things to work correctly, the directory containing the Octonion files must be in your path. This can be accomplished by using the `Join` command:

```
$Path = Join[$Path, {"Dir"}]
```

where `Dir` is the appropriate directory.

The syntax of `Dir` may vary depending on the operating system.

This command can also be added to your `init.m` file.

- **Load some essential commands by typing `<<Octonion.m`.**

This loads `Octonion.m`, `OctoSetup.m`, `OctoMult.m`, and one of `OctoPrintA.m`, `OctoPrintB.m`.

2. THE BASIC COMMANDS

Here is a list of the basic commands:

Lists are enclosed in curly brackets, as in `{1, 2}`.

<code>MakeVector[V]</code>	Turns list V into column vector
<code>MakeMatrix[M]</code>	Turns list M into square matrix
<code>Flatten[X, 1]</code>	Turns matrix (or vector) X into list
<code>bar[q]</code>	Octonionic conjugate of q
<code>dagger[X]</code>	Hermitian conjugate of X
<code>Omult[p, q]</code>	Octonionic multiplication (same as <code>omult[p, q]</code>)
<code>MMult[X, Y]</code>	Matrix multiplication XY
<code>SMult[q, X]</code>	Scalar multiplication qX
<code>SMultR[X, q]</code>	Scalar multiplication Xq
<code>assoc[p, q, r]</code>	Associator $(pq)r - p(qr)$
<code>Tr[X]</code>	Trace of X
<code>Tilde[X]</code>	Tilde of 2×2 matrix X
<code>Odet[X]</code>	Determinant of 2×2 matrix X
<code>Jdet[X]</code>	Determinant of 3×3 matrix X
<code>VSq[V]</code>	Vector square $V^\dagger V$
<code>MSq[V]</code>	Matrix square VV^\dagger

Here are some dummy variables:

<code>oa -> oi, ox -> oz</code>	arbitrary octonions
<code>O1, O2, O3</code>	3 generic octonions
<code>Omatx</code>	arbitrary 2×2 matrix
<code>Ovec</code>	arbitrary 2-component vector
<code>Jmatx</code>	arbitrary 3×3 matrix
<code>Jvec</code>	arbitrary 3-component vector
<code>Qa -> Qd</code>	3 arbitrary octonions in i, j, k quaternionic subalgebra