The Geometry of Relativity

Tevian Dray

Department of Mathematics Oregon State University http://www.math.oregonstate.edu/~tevian

Introduction Special Relativity

eneral Relativity Curriculum

Books

The Geometry of Special Relativity

Tevian Dray A K Peters/CRC Press 2012 ISBN: 978-1-4665-1047-0 http://physics.oregonstate.edu/coursewikis/GSR

Differential Forms and the Geometry of General Relativity

Tevian Dray A K Peters/CRC Press 2014 ISBN: 978-1-4665-1000-5 http://physics.oregonstate.edu/coursewikis/GDF http://physics.oregonstate.edu/coursewikis/GGR

Hyperbolic Trigonometry Applications

Trigonometry

Hyperbolic Trigonometry Applications

Length Contraction

Tevian Dray The Geometry of Relativity

Hyperbolic Trigonometry Applications

Paradoxes

A 20 foot pole is moving towards a 10 foot barn fast enough that the pole appears to be only 10 feet long. As soon as both ends of the pole are in the barn, slam the doors. How can a 20 foot pole fit into a 10 foot barn?

Hyperbolic Trigonometry Applications

Relativistic Mechanics

A pion of (rest) mass m and (relativistic) momentum $p = \frac{3}{4}mc$ decays into 2 (massless) photons. One photon travels in the same direction as the original pion, and the other travels in the opposite direction. Find the energy of each photon. $[E_1 = mc^2, E_2 = \frac{1}{4}mc^2]$

The Metric Differential Forms Geodesics Einstein's Equation

Line Elements

$dr^2 + r^2 d\phi^2$ $d\theta^2 + \sin^2 \theta d\phi^2$ $d\beta^2 + \sinh^2 \beta d\phi^2$

Tevian Dray The Geometry of Relativity

Introduction Special Relativity	The Metric Differential Forms
General Relativity	
Curriculum	Einstein's Equation

Vector Calculus

 $d\vec{\mathbf{r}} = dx\,\hat{\imath} + dy\,\hat{\jmath} = dr\,\hat{\mathbf{r}} + r\,d\phi\,\hat{\phi}$

Introduction The Metric Special Relativity Geodesics Curriculum Einstein's Equatio

Differential Forms in a Nutshell (\mathbb{R}^3)

Differential forms are integrands: $(*^2 = 1)$

 $f = f \qquad (0-\text{form})$ $F = \vec{F} \cdot d\vec{r} \qquad (1-\text{form})$ $*F = \vec{F} \cdot d\vec{A} \qquad (2-\text{form})$ $*f = f \, dV \qquad (3-\text{form})$

Exterior derivative: $(d^2 = 0)$

$$df = \vec{\nabla} f \cdot d\vec{\mathbf{r}}$$
$$dF = \vec{\nabla} \times \vec{\mathbf{F}} \cdot d\vec{\mathbf{A}}$$
$$d*F = \vec{\nabla} \cdot \vec{\mathbf{F}} dV$$
$$d*f = 0$$

The Metric Differential Forms Geodesics Einstein's Equation

The Geometry of Differential Forms

Tevian Dray

The Geometry of Relativity

Introduction Special Relativity	
General Relativity	Geodesics
Curriculum	Einstein's Equation

Geodesic Equation

Orthonormal basis:

$$d\vec{\mathbf{r}} = \sigma^i \, \hat{\mathbf{e}}_i$$

Connection:

$$egin{aligned} \omega_{ij} &= \hat{\mathbf{e}}_i \cdot d\hat{\mathbf{e}}_j \ d\sigma^i + \omega^i{}_j \wedge \sigma^j &= 0 \ \omega_{ij} + \omega_{ji} &= 0 \end{aligned}$$

Geodesics:

$$ec{\mathbf{v}} d\lambda = dec{\mathbf{r}}$$

 $\dot{ec{\mathbf{v}}} = 0$

Symmetry:

$$d\vec{\mathbf{X}} \cdot d\vec{\mathbf{r}} = 0$$
$$\implies \vec{\mathbf{X}} \cdot \vec{\mathbf{v}} = \text{const}$$

Introduction Special Relativity	
General Relativity	Geodesics
Curriculum	Einstein's Equation

Einstein's Equation

Curvature:

$$\Omega^{i}{}_{j} = \boldsymbol{d}\omega^{i}{}_{j} + \omega^{i}{}_{k} \wedge \omega^{k}{}_{j}$$

Einstein tensor:

$$\gamma^{i} = -\frac{1}{2} \Omega_{jk} \wedge *(\sigma^{i} \wedge \sigma^{j} \wedge \sigma^{k}$$
$$G^{i} = *\gamma^{i} = G^{i}{}_{j} \sigma^{j}$$
$$\vec{\mathbf{G}} = G^{i} \hat{\mathbf{e}}_{i} = G^{i}{}_{j} \sigma^{j} \hat{\mathbf{e}}_{i}$$
$$\Longrightarrow d*\vec{\mathbf{G}} = 0$$

Field equation:

$$\vec{\mathbf{G}} + \Lambda \, d\vec{\mathbf{r}} = 8\pi \vec{\mathbf{T}}$$

(vector valued 1-forms, not tensors)

Does it work?

- I am a mathematician...
- There is no GR course in physics department. (I developed the SR course.)
- Core audience is undergraduate math and physics majors. (Many double majors.)
- Hartle's book:

Perfect for physics students, but tough for math majors.

• My course: 10 weeks differential forms, then 10 weeks GR. (Some physics students take only GR, after "crash course".)

In this context:

SUMMARY

http://relativity.geometryof.org/GDF http://relativity.geometryof.org/GDF http://relativity.geometryof.org/GGR

- Special relativity is hyperbolic trigonometry!
- Spacetimes are described by metrics!
- General relativity can be described without tensors!
- BUT: Need vector-valued differential forms...

THE END