Octonions and the exceptional Lie algebras (and particle physics)

Tevian Dray
(joint work with Robert Wilson and Corinne Manogue)
Department of Mathematics
Oregon State University
http://www.math. oregonstate.edu/~tevian

OregonState

University

(supported by FQXi and the John Templeton Foundation)

With thanks to:

- Rob Wilson, who showed us how to get to E_{8} (in 2014...);
- David Fairlie \& Tony Sudbery, who got us started in the 1980s, Paul Davies, who believed in us from the start, David Griffiths, who taught us physics (and math), and Jim Wheeler, who explained the conformal group to us;
- Jörg Schray (Ph.D. 1994),

Jason Janesky (1997-1998),
Aaron Wangberg (Ph.D. 2007), Henry Gillow-Wiles (M.S. 2008), Joshua Kinkaid (M.S. 2012), Lida Bentz (M.S. 2017), and Alex Putnam (M.S. 2017), who taught us as much as we taught them;

- John Huerta and Susumu Okubo, who helped along the way;
- and FQXi, the John Templeton Foundation, and the Institute for Advanced Study for financial support.

Division Algebras

Real Numbers

\mathbb{R}

Quaternions

$$
\begin{gathered}
\mathbb{H}=\mathbb{C} \oplus \mathbb{C} j \\
q=(x+y i)+(r+s i) j
\end{gathered}
$$

Octonions

$$
\begin{gathered}
\mathbb{C}=\mathbb{R} \oplus \mathbb{R} i \\
z=x+y i
\end{gathered}
$$

$\mathbb{O}=\mathbb{H} \oplus \mathbb{H} \ell$
Split Octonions

$$
\mathbb{O}^{\prime}=\mathbb{H} \oplus \mathbb{H} L
$$

$$
I^{2}=J^{2}=-U, L^{2}=+U
$$

Split Division Algebras

$$
I^{2}=J^{2}=-U, L^{2}=+U
$$

Signature (4, 4):

$$
\begin{aligned}
& x=x_{1} U+x_{2} I+x_{3} J+x_{4} K+x_{5} K L+x_{6} J L+x_{7} I L+x_{8} L \Longrightarrow \\
& \quad|x|^{2}=x \bar{x}=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)-\left(x_{5}^{2}+x_{6}^{2}+x_{7}^{2}+x_{8}^{2}\right)
\end{aligned}
$$

Null elements:

$$
|U \pm L|^{2}=0
$$

Projections:

$$
\begin{aligned}
\left(\frac{U \pm L}{2}\right)^{2} & =\frac{U \pm L}{2} \\
(U+L)(U-L) & =0
\end{aligned}
$$

Definition

A Lie Group G is a group that is also a smooth manifold, and on which the group operations are smooth:

$$
\begin{aligned}
G \times G & \longrightarrow G \\
(X, Y) & \longmapsto X^{-1} Y
\end{aligned}
$$

Example

$$
\begin{aligned}
\mathrm{SO}(2) & =\left\{M \in \mathbb{R}^{2 \times 2} \mid M M^{T}=I, \operatorname{det} M=1\right\} \\
& =\left\{\left.\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \right\rvert\, \theta \in \mathbb{R} / 2 \pi \mathbb{Z}\right\} \cong \mathbb{S}^{1}
\end{aligned}
$$

continuous symmetry groups (rotations)

$$
|G|=\# \text { of parameters }
$$

Definition

A Lie algebra is a vector space \mathfrak{g} together with a binary operation

$$
\begin{aligned}
\mathfrak{g} \times \mathfrak{g} & \longrightarrow \mathfrak{g} \\
(x, y) & \longmapsto[x, y]
\end{aligned}
$$

which is bilinear and satisfies

$$
\begin{gathered}
{[x, y]=-[y, x]} \\
{[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0}
\end{gathered}
$$

Example

$$
\begin{aligned}
& \mathfrak{s o}(3)=\left\{A \in \mathbb{R}^{3 \times 3} \mid A^{t}=-A, \operatorname{tr}(A)=0\right\} \\
&=\left\langle r_{x}, r_{y}, r_{z}\right\rangle \\
& r_{z}=\left(\begin{array}{rrr}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left.\frac{d}{d \theta}\right|_{\theta=0}\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right) \\
& {\left[r_{x}, r_{y}\right]=r_{z} }
\end{aligned}
$$

$$
\text { infinitesimal symmetries }\left(\mathfrak{g}=\left.T G\right|_{e}\right)
$$

(WARNING: physicists use $-i \frac{d}{d \theta}$ to get Hermitian operators.)

$$
|\mathfrak{g}|=\operatorname{dim} \mathfrak{g}=\operatorname{dim} T G=|G|
$$

Representations

Definition

A representation of a Lie group G on a vector space V is a (group) homomorphism $\Pi: G \longmapsto G L(V)$.

Definition

A representation of a Lie algebra \mathfrak{g} on a vector space V is a (Lie algebra) homomorphism $\rho: \mathfrak{g} \longmapsto \mathfrak{g l}(V)$.
(WARNING: The map ρ, the image matrices $\rho(\mathfrak{g) , ~ a n d ~ t h e ~ v e c t o r ~ s p a c e ~}$ V are all referred to as "representations of \mathfrak{g} ", and similarly for G.)

Theorem

(Killing 1888-1890, Cartan 1894)
The ("simple") Lie groups are the classical groups

A_{n}	$S U(n+1)$
B_{n}	$S O(2 n+1)$
C_{n}	$S p(n)$
D_{n}	$S O(2 n)$

together with the exceptional groups $G_{2}, F_{4}, E_{6}, E_{7}$, and E_{8}.

$$
\begin{aligned}
S U(n) & \equiv S U(n, \mathbb{C}) & G_{2} & \equiv \operatorname{Aut}(\mathbb{O}) \\
S O(n) & \equiv S U(n, \mathbb{R}) & E_{6} & \equiv S L(3, \mathbb{O}) \\
S p(n) & \equiv S U(n, \mathbb{H}) & E_{7} & \equiv S p(6, \mathbb{O}) \\
F_{4} & \equiv S U(3, \mathbb{O}) & E_{8} & \equiv ? ?
\end{aligned}
$$

The Freudenthal-Tits Magic Square

Freudenthal (1964), Tits (1966):

	\mathbb{R}	\mathbb{C}	\mathbb{H}	\mathbb{O}
\mathbb{R}	\mathfrak{a}_{1}	\mathfrak{a}_{2}	\mathfrak{c}_{3}	\mathfrak{f}_{4}
\mathbb{C}	\mathfrak{a}_{2}	$\mathfrak{a}_{2} \oplus \mathfrak{a}_{2}$	\mathfrak{a}_{5}	\mathfrak{e}_{6}
\mathbb{H}	\mathfrak{c}_{3}	\mathfrak{a}_{5}	\mathfrak{d}_{6}	\mathfrak{e}_{7}
\mathbb{O}	\mathfrak{f}_{4}	\mathfrak{e}_{6}	\mathfrak{e}_{7}	\mathfrak{e}_{8}

Vinberg (1966):

$$
\begin{aligned}
& \operatorname{sa}(3, \mathbb{A} \otimes \mathbb{B}) \oplus \operatorname{der}(\mathbb{A}) \oplus \operatorname{der}(\mathbb{B}) \\
& \operatorname{der}(\mathbb{H})=\mathfrak{s o}(3) ; \quad \operatorname{der}(\mathbb{O})=\mathfrak{g}_{2}
\end{aligned}
$$

Goal:
Description as symmetry groups
[Barton \& Sudbery (2003), Wangberg (PhD 2007),
Dray \& Manogue (CMUC 2010), Wangberg \& Dray (JMP 2013, JAA 2014),
Dray, Manogue, \& Wilson (CMUC 2014), Wilson, Dray, \& Manogue (2022)]

The 2×2 Magic Square

Barton \& Sudbery (2003):

	\mathbb{R}	\mathbb{C}	\mathbb{H}	\mathbb{O}
\mathbb{R}	\mathfrak{d}_{1}	\mathfrak{a}_{1}	\mathfrak{b}_{2}	\mathfrak{b}_{4}
\mathbb{C}	\mathfrak{a}_{1}	$\mathfrak{a}_{1} \oplus \mathfrak{a}_{1}$	\mathfrak{d}_{3}	\mathfrak{d}_{5}
\mathbb{H}	\mathfrak{b}_{2}	\mathfrak{d}_{3}	\mathfrak{d}_{4}	\mathfrak{d}_{6}
\mathbb{O}	\mathfrak{b}_{4}	\mathfrak{d}_{5}	\mathfrak{d}_{6}	\mathfrak{d}_{8}

"Vinberg":

$$
\begin{gathered}
s a(2, \mathbb{A} \otimes \mathbb{B}) \oplus \mathfrak{s o}(\operatorname{Im} \mathbb{A}) \oplus \mathfrak{s o}(\operatorname{Im} \mathbb{B}) \\
\mathfrak{s o}(\operatorname{Im} \mathbb{H})=\mathfrak{s o}(3) ; \quad \mathfrak{s o}(\operatorname{Im} \mathbb{O})=\mathfrak{s o}(7)
\end{gathered}
$$

Unified Clifford algebra description using division algebras
[Kincaid (MS 2012), Kincaid and Dray (MPLA 2014), Dray, Huerta, \& Kincaid (LMP 2014)]

$\mathfrak{s o (3)}$

$$
\begin{aligned}
P & =\left(\begin{array}{cc}
z & x-i y \\
x+i y & -z
\end{array}\right) \\
& =x \sigma_{x}+y \sigma_{y}+z \sigma_{z} \\
& \Longrightarrow \operatorname{det} P=-\left(x^{2}+y^{2}+z^{2}\right)
\end{aligned}
$$

Preserved by $P \longmapsto M P M^{\dagger}$ with $M M^{\dagger}=1$. SU(2)!
Generated by $P \longmapsto A P+P A^{\dagger}$ with $A+A^{\dagger}=0, \mathfrak{s u}(2)$! (Weyl) spinor: $\theta \in \mathbb{C}^{2}, \theta \longmapsto M \theta$.

$$
\begin{aligned}
s_{x} & =-\frac{i}{2} \sigma_{x} \Longrightarrow\left[s_{x}, s_{y}\right]=s_{z} \Longrightarrow \mathfrak{s u}(2) \cong \mathfrak{s u}(3) \\
r_{x}^{2}+r_{y}^{2}+r_{z}^{2} & =-2 l(\text { spin } 1), \text { but } s_{x}^{2}+s_{y}^{2}+s_{z}^{2}
\end{aligned}=-\frac{3}{4} I\left(\text { spin } \frac{1}{2}\right) . .
$$

Introduction
2×2 Magic Square
3×3 Magic Square

$\mathfrak{s o}(3,1)$

$$
\begin{aligned}
P & =\left(\begin{array}{cc}
t+z & x-i y \\
x+i y & t-z
\end{array}\right) \\
& =t \sigma_{t}+x \sigma_{x}+y \sigma_{y}+z \sigma_{z}
\end{aligned}
$$

group: $P \longmapsto M P M^{\dagger} \quad$ algebra: $P \longmapsto A P+P A^{\dagger}$

$\mathfrak{s o}(3,1)$

$$
\begin{aligned}
P & =\left(\begin{array}{cc}
t+z & x-i y \\
x+i y & t-z
\end{array}\right) \\
& =t \sigma_{t}+x \sigma_{x}+y \sigma_{y}+z \sigma_{z}
\end{aligned}
$$

Rotations (antihermitian!): (so $P \longmapsto[A, P])$

$$
A=i \sigma_{x}, i \sigma_{y}, i \sigma_{z}
$$

Boosts (hermitian!):

$$
\text { (so } P \longmapsto\{A, P\} \text {) }
$$

$$
A=\sigma_{x}, \sigma_{y}, \sigma_{z}
$$

$\mathfrak{s o}(3,1)$

$$
\begin{aligned}
P & =\left(\begin{array}{cc}
L t+U z & 1 x-i y \\
1 x+i y & L t-U z
\end{array}\right) \\
& =L t \sigma_{t}+1 x \sigma_{x}+i y\left(-i \sigma_{y}\right)+U z \sigma_{z}
\end{aligned}
$$

Rotations (antihermitian!): \quad (so $P \longmapsto[A, P]$)

$$
A=i \sigma_{x}, i \sigma_{y}, i \sigma_{z}
$$

Boosts (antihermitian!): \quad (so $P \longmapsto[A, P]$)

$$
\begin{aligned}
& X_{L}=L \sigma_{x}, \quad X_{i L}=L \sigma_{y}, \quad D_{L}=L \sigma_{z} \\
& \mathfrak{s o}(3,1) \cong \mathfrak{s l}(2, \mathbb{C}) \cong \mathfrak{s u}\left(2, \mathbb{C}^{\prime} \otimes \mathbb{C}\right)
\end{aligned}
$$

Guiding Principle \#1

$\frac{\text { Lie algebras are real! }}{\text { (signature matters) }}$
$\mathfrak{s o}(3,1)$ has boosts and rotations

	\mathbb{R}	\mathbb{C}	\mathbb{H}	\mathbb{O}
\mathbb{R}^{\prime}	$\mathfrak{s o}(2)$	$\mathfrak{s o}(3)$	$\mathfrak{s o}(5)$	$\mathfrak{s o}(9)$
\mathbb{C}^{\prime}	$\mathfrak{s o}(2,1)$	$\mathfrak{s o}(3,1)$	$\mathfrak{s o}(5,1)$	$\mathfrak{s o}(9,1)$
\mathbb{H}^{\prime}	$\mathfrak{s o}(3,2)$	$\mathfrak{s o}(4,2)$	$\mathfrak{s o}(6,2)$	$\mathfrak{s o}(10,2)$
\mathbb{O}^{\prime}	$\mathfrak{s o}(5,4)$	$\mathfrak{s o}(6,4)$	$\mathfrak{s o}(8,4)$	$\mathfrak{s o}(12,4)$

$$
d=3,4,6,10
$$

(1980s: Corrigan, Evans, Fairlie, Manogue, Sudbery) (1990s: Manogue \& Schray)

Summary: 2×2 Magic Square

- The algebras in the 2×2 magic square are $\mathfrak{s u}\left(2, \mathbb{K}^{\prime} \otimes \mathbb{K}\right)$.
- Each algebra is generated by the 2×2 matrices below, with $p \in \mathbb{K}^{\prime} \otimes \mathbb{K}$ and $q \in \operatorname{Im} \mathbb{K}+\operatorname{Im} \mathbb{K}^{\prime}$.

$$
D_{q}=\left(\begin{array}{cc}
q & 0 \\
0 & -q
\end{array}\right), \quad X_{p}=\left(\begin{array}{cc}
0 & p \\
-\bar{p} & 0
\end{array}\right)
$$

Idea: rotations/boosts acting on $\mathbb{K}^{\prime} \oplus \mathbb{K}$:

$$
D_{i}=D_{1 i} ; D_{L}=D_{U L} ; X_{i}=X_{i U} ; X_{L}=X_{1 L}
$$

- The remaining basis elements are of the form

$$
D_{i, j}=\left(\begin{array}{cc}
i \circ j & 0 \\
0 & i \circ j
\end{array}\right)=\frac{1}{2}\left[D_{i}, D_{j}\right]
$$

where $i \circ j \doteq k$ over \mathbb{H}, but stands for nesting over \mathbb{O}.

The 3×3 Magic Square

	\mathbb{R}	\mathbb{C}	\mathbb{H}	\mathbb{O}
\mathbb{R}^{\prime}	$\mathfrak{s u}(3, \mathbb{R})$	$\mathfrak{s u}(3, \mathbb{C})$	$\mathfrak{s u}(3, \mathbb{H})$	$\mathfrak{s u}(3, \mathbb{O})$
\mathbb{C}^{\prime}	$\mathfrak{s l}(3, \mathbb{R})$	$\mathfrak{s l}(3, \mathbb{C})$	$\mathfrak{s l}(3, \mathbb{H})$	$\mathfrak{s l}(3, \mathbb{O})$
\mathbb{H}^{\prime}	$\mathfrak{s p}(6, \mathbb{R})$	$\mathfrak{s p}(6, \mathbb{C})$	$\mathfrak{s p}(6, \mathbb{H})$	$\mathfrak{s p}(6, \mathbb{O})$
\mathbb{O}^{\prime}	$? ?$	$? ?$	$? ?$	$? ?$

Dray \& Manogue (2010):
$F_{4} \cong \operatorname{SU}(3, \mathbb{O}), E_{6(-26)} \cong \operatorname{SL}(3, \mathbb{O})$ using $\operatorname{SL}(2, \mathbb{O}) \cong \operatorname{Spin}(9,1)$
Dray, Manogue, \& Wilson (2014): $E_{7} \cong \operatorname{Sp}(6, \mathbb{O})$
Minimal representation of \mathfrak{e}_{8} is adjoint!

Guiding Principle \#2

The 3×3 structure is broken to 2×2.

$$
\begin{gathered}
\mathcal{P}=\left(\begin{array}{cc}
P & \theta \\
\theta^{\dagger} & n
\end{array}\right) \quad \mathcal{M}=\left(\begin{array}{cc}
M & 0 \\
0 & 1
\end{array}\right) \\
\mathcal{P} \longmapsto \mathcal{M P} \mathcal{M}^{\dagger} \quad \Longrightarrow \quad P \longmapsto M P M^{\dagger}, \theta \longmapsto M \theta \\
\mathcal{P} \longmapsto[\mathcal{A}, \mathcal{P}] \quad \Longrightarrow \quad P \longmapsto[A, P], \theta \longmapsto A \theta
\end{gathered}
$$

Idea: 2×2 vector and spinor actions at same time! Example: $\mathcal{M} \in E_{6}, \mathcal{A} \in \mathfrak{e}_{6}, \mathcal{P} \in H_{3}(\mathbb{O})$

Guiding Principle \#2

The 3×3 structure is broken to 2×2.

$$
\begin{gathered}
\mathcal{P}=\left(\begin{array}{cc}
P & \theta \\
-\theta^{\dagger} & n
\end{array}\right) \quad \mathcal{M}=\left(\begin{array}{cc}
M & 0 \\
0 & 1
\end{array}\right) \\
\mathcal{P} \longmapsto \mathcal{M P} \mathcal{M}^{-1} \quad \Longrightarrow \quad P \longmapsto M P M^{-1}, \theta \longmapsto M \theta \\
\mathcal{P} \longmapsto[\mathcal{A}, \mathcal{P}] \quad \Longrightarrow \quad P \longmapsto[A, P], \theta \longmapsto A \theta
\end{gathered}
$$

Idea: 2×2 adjoint and spinor actions at same time! Example: $\mathcal{M} \in E_{6}, \mathcal{A} \in \mathfrak{e}_{6}, \mathcal{P} \in \mathfrak{e}_{6}(3 \times 3$ adjoint action!)

Summary: $\mathbf{3 \times 3} \mathbf{~ M a g i c ~ S q u a r e ~}$

- The algebras in the 3×3 magic square are $\mathfrak{s u}\left(3, \mathbb{K}^{\prime} \otimes \mathbb{K}\right)$.
- Each algebra is generated by the 3×3 matrices below, with $p \in \mathbb{K}^{\prime} \otimes \mathbb{K}$ and $q \in \operatorname{Im} \mathbb{K}+\operatorname{Im} \mathbb{K}^{\prime}$.

$$
\begin{gathered}
D_{q}=\left(\begin{array}{ccc}
q & 0 & 0 \\
0 & -q & 0 \\
0 & 0 & 0
\end{array}\right), \quad S_{q}=\left(\begin{array}{ccc}
q & 0 & 0 \\
0 & q & 0 \\
0 & 0 & -2 q
\end{array}\right), \quad X_{p}=\left(\begin{array}{ccc}
0 & p & 0 \\
-\bar{p} & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
Y_{p}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & p \\
0 & -\bar{p} & 0
\end{array}\right), \quad Z_{p}=\left(\begin{array}{ccc}
0 & 0 & -\bar{p} \\
0 & 0 & 0 \\
p & 0 & 0
\end{array}\right)
\end{gathered}
$$

- The remaining basis elements can be chosen to be of the form

$$
D_{i, j}=\left(\begin{array}{ccc}
i \circ j & 0 & 0 \\
0 & i \circ j & 0 \\
0 & 0 & 0
\end{array}\right)
$$

where $i \circ j \doteq k$ over \mathbb{H}, but stands for nesting over \mathbb{O}. TRIALITY!

Subalgebras

- All algebras in both magic squares are subalgebras of \mathfrak{e}_{8} !
- $\mathfrak{e}_{8(-24)}=\mathfrak{s o}(12,4)+\mathbf{1 2 8}$.
- The 128 is a Majorana-Weyl spinor rep of $\mathfrak{s o}(12,4)$.
- The $\mathbf{1 2 8}$ contains spinor reps of each 2×2 algebra.

Particle Physics

Fundamental particles (leptons and quarks) are Lorentz ($\mathfrak{s o}(3,1)$) spinors, and carry representations of electromagnetism ("charge"; $\mathfrak{u}(1))$, the weak interaction $\left(\mathfrak{s u}(2)_{L}\right)$, and the strong interaction ("color"; su(3)).

Mediators (photons, vector bosons, gluons) are Lorentz vectors, and carry (adjoint?) representations of the interactions.

Want simultaneous representations of the Lorentz group $\mathrm{SO}(3,1)$ and the Standard Model group $\mathrm{U}(1) \times \mathrm{SU}(2)_{L} \times \mathrm{SU}(3)$.

Guiding Principle \#3

All representations live in \mathfrak{e}_{8} !

$$
\begin{aligned}
\mathfrak{e}_{8(-24)} & =\mathfrak{s o}(12,4)+\text { spinors } \\
\mathfrak{s o}(12,4) & \supset \mathfrak{s o}(3,1)+\mathfrak{s o}(7,3)+\mathfrak{s o}(2) \\
& \supset \mathfrak{s o}(3,1)+\mathfrak{s o}(4)+\mathfrak{s o}(3,3)+\mathfrak{s o}(2) \\
& \supset \mathfrak{s o}(3,1)+\mathfrak{s u}(2)_{L}+\mathfrak{s u}(2)_{R}+\mathfrak{s u}(3)_{c}+\mathfrak{u}(1)+\mathfrak{s o}(2)
\end{aligned}
$$

SUMMARY

Lie algebras are real!
 The 3×3 structure is broken to 2×2. All representations live in \mathfrak{e}_{8} !

$$
\begin{gathered}
\mathfrak{e}_{8(-24)}=\mathfrak{s o}(12,4)+\text { spinors } \\
\mathfrak{s o}(12,4) \supset \mathfrak{s o}(3,1) \oplus \mathfrak{s u}(3) \oplus \mathfrak{s u}(2) \oplus \mathfrak{u}(1) " \otimes \mathbb{C}^{\prime \prime}
\end{gathered}
$$

- Manogue, Dray, and Wilson: ... An E8 description of the Standard Model, J. Math. Phys. 63, 081703 (2022). arXiv: 2204.05310
- Wilson, Dray, and Manogue: An octonionic construction of E_{8}..., Innov. Incidence Geom. 20, 611-634 (2023). arXiv.org:2204.04996
- Dray, Manogue, and Wilson: A New ... Representation of E_{6}..., J. Math. Phys. 65, 031702 (2024). arXiv: 2309.00078
- Dray, Manogue, and Wilson: A New ... Representation of E_{7}..., J. Math. Phys. 65, 031703 (2024). arXiv: 2401.10534

