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Introduction Division Algebras

Division Algebras

Real Numbers Quaternions

R H=CaoCj
q = (x+yi) + (r + si)j

Complex Numbers Octonions
C=R®Ri O=HoH/
z=x+yi

Split Octonions
O =HoHL

[P=r=—_u 12=+U]
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Introduction Division Algebras

Split Division Algebras

[P=r=—_u 2= +U|

Signature (4, 4):
x=x1U 4+ xo! + x3J + x4 K + xs KL + xgJL + x7IL 4+ xgL. —>

IXP=xx=(F +x3 +53 +x3) — (0@ +2 + +x3)

Null elements:
U£L?=0

Projections:

2 2
(U+L)(U=L)=0

(UiL>2UiL



Introduction
Lie Groups & Lie Algebras

A Lie Group G is a group that is also a smooth manifold, and on
which the group operations are smooth:

GxG — G
(X,Y) — X7y

SO(2) = {MeR>>2MMT =1 ,detM =1}

- cosf) —sinf ~ ol
N {<sin9 C059>‘9€R/27TZ}—S

continuous symmetry groups (rotations)

|G| = # of parameters
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Introduction
Lie Groups & Lie Algebras

A Lie algebra is a vector space g together with a binary operation

gxg — 9
(y) — [xy]
which is bilinear and satisfies
[, y1 ==y, x|
[ bys 2l + by [z, 6] + [z, [x, y]l = 0
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Introduction
Lie Groups & Lie Algebras
Example

s0(3) = {AcR¥3 A" = —A tr(A) =0}
— <rx7ry7rz>
0 -1 0 d cosf) —sinf O
=11 0 0 =70 sin 6 cosf 0
0O 00 =0 0 0 1
[rX’ry] = Iz

infinitesimal symmetries (g = TG]|.)
(WARNING: physicists use —id% to get Hermitian operators.)

lg| = dimg =dim TG = |G|
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Introduction
Lie Groups & Lie Algebras

Representations

A representation of a Lie group G on a vector space V is a (group)
homomorphism M : G — GL(V).

A representation of a Lie algebra g on a vector space V is a (Lie
algebra) homomorphism p : g — gl(V).

(WARNING: The map p, the image matrices p(g), and the vector space
V are all referred to as "representations of g", and similarly for G.)
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Introduction
Classification

(Killing 1888-1890, Cartan 1894)
The (“simple”) Lie groups are the classical groups

An | SU(h+1)
B, | SO(2n+1)
Cn Sp(n)
1Dk S0(2n)

together with the exceptional groups Gy, F4, Es, E7, and Eg.

SU(n) = SU(n,C) G, = Aut(0)

SO(n) = SU(n,R) Es = SL(3,0)

Sp(n) = SU(n,H) E; = S5p(6,0)
Fs, = SU(3,0) Eg = 77
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Introduction
Classification

The Freudenthal-Tits Magic Square
Freudenthal (1964), Tits (1966):

R C H | O
R | a1 ao 3 | fa
Clay|ax®ay | as | e
H | ¢3 as 06 | ¢7
O fa ¢6 e7 | eg

Vinberg (1966):
sa(3,A ® B) & der(A) @ der(B)

der(H) = s0(3); der(0) = g2

Goal: ’ Description as symmetry groups‘

[Barton & Sudbery (2003), Wangberg (PhD 2007),
Dray & Manogue (CMUC 2010), Wangberg & Dray (JMP 2013, JAA 2014),
Dray, Manogue, & Wilson (CMUC 2014), Wilson, Dray, & Manogue (2022)]
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The 2 X 2 Magic Square
2 X 2 Magic Square

The 2 X 2 Magic Square
Barton & Sudbery (2003):

R C H|O
01 a by | by
apr | agPdag | 03 | 05
by 03 04 | 06
by 05 06 | 0g

O|E| Q| &

“Vinberg”:
sa(2,A ®B) ® so(ImA) & so(Im B)

so(ImH) = s0(3); so(ImQ) = s0(7)

’Unified Clifford algebra description using division algebras‘

[Kincaid (MS 2012), Kincaid and Dray (MPLA 2014),
Dray, Huerta, & Kincaid (LMP 2014)]
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2 X 2 Magic Square Clifford Algebras

s0(3)

z X —
PZ( . y)
X+ 1y =7

=Xox+yo,+zo,

—> det P = —(x* + y? + 2?)

Preserved by P +— MPMT with MM = 1. SU(2)!
Generated by P — AP + PAT with A+ AT = 0. su(2)!
(Weyl) spinor: 6 € C?, 6 — M6.

Sk = —éax = [s,5,] = s, = su(2) = su(3)
r2+r2+r2 = -2l (spin 1), but s2 + s2 4 s2 = —3/ (spin 3).
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2 X 2 Magic Square Clifford Algebras

s0(3,1)

t+z x—ly
X+iy t—z

ZtUt+XUx+y0y+ZUz

group: P — MPM* algebra: P — AP + PAf
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2 X 2 Magic Square Clifford Algebras

s0(3,1)

t+z x—1
P:< ] y>
xX+iy t—z
=tot+Xxox+yo,+zo;

Rotations (antihermitian!): (so P+—[A, P])

A=ioy,ioy,io,

Boosts (hermitian!): (so P— {A, P})

A= Ox;0y,0z
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2 X 2 Magic Square Clifford Algebras

s0(3,1)

Vector in C' @ C
. (Lt—i— Uz 1X—iy>
Ix+iy Lt— Uz
= Lto; + Ixox+ iy (—ioy) + Uzo,

Rotations (antihermitian!): (so P+—[A, P])

A= oy, ioy,io;

Boosts (antihermitian!): (so P+— [A, P])
XL:LO'X, )(,'L:L()'y7 D[_:LO'Z

50(3,1) 2 51(2,C) = 5u(2,C' ® C)|
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Real Forms
Guiding Principle #1

’ Lie algebras are real! ‘

(signature matters)
$0(3,1) has boosts and rotations

R C H O
R | s0(2) s0(3) 50(5) s0(9)
C' | s0(2,1) | s0(3,1) | so(5,1) | s0(9,1)
H' | 50(3,2) | s0(4,2) | s0(6,2) | s0(10,2)
Q' | s0(5,4) | s0(6,4) | s0(8,4) | so(12,4)
d=3,4,6,10

s: Corrigan, Evans, Fairlie, Manogue, Sudbery
1980s: Corri E Fairlie, M Sudb
(1990s: Manogue & Schray)
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2 X 2 Magic Square
Real Forms

Summary: 2 X 2 Magic Square

@ The algebras in the 2 x 2 magic square are su(2, K’ ® K).

o Each algebra is generated by the 2 x 2 matrices below, with
peK @K and g € ImK + ImK'.

0 0
0 —q —p 0

Idea: rotations/boosts acting on K’ @ K:
D;i = Dyj; DL = Dy; Xi = Xiu; XL = Xt
® The remaining basis elements are of the form

ioj 0 1
D;; = = — [D;, D;
" (0 ioj> 2 [Di: D
where /o j = k over H, but stands for nesting over O.
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3 X 3 Magic Square
3 X 3 Magic Square

The 3 x 3 Magic Square

R C H O
R" | su(3,R) | su(3,C) | su(3,H) | su(3,0)
C' | sl(3,R) | sl(3,C) | sl(3,H) | sl(3,0)
H' | sp(6,R) | sp(6,C) | sp(6,H) | sp(6,0)
o ” 7 77 7

Dray & Manogue (2010):
Fs = SU(3,0), Es(—26) = SL(3,0) using SL(2,0) = Spin(9, 1)
Dray, Manogue, & Wilson (2014): E; = Sp(6, Q)

Minimal representation of eg is adjoint!
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Block Structure
3 X 3 Magic Square

Guiding Principle #2

’The 3 X 3 structure is broken to 2 X 2.‘

(0 ()

Pr— MPMI = P+— MPMT, 6 — M0
P—[AP] = P+——[AP], 06— A)

Idea: 2 x 2 vector and spinor actions at same time!
Example: M € Es, A € ¢6, P € H3(0)
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Block Structure
3 X 3 Magic Square

Guiding Principle #2

’The 3 X 3 structure is broken to 2 X 2.‘

(5 (1)

Pr— MPM™ ' = P+ MPM L 60— M0
P—[AP] = P+——[AP], 06— Ad

Idea: 2 x 2 adjoint and spinor actions at same time!
Example: M € Es, A € ¢6, P € ¢6 (3 x 3 adjoint action!)
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Block Structure
3 X 3 Magic Square

Summary: 3 X 3 Magic Square
® The algebras in the 3 x 3 magic square are su(3, K’ ® K).

@ Each algebra is generated by the 3 x 3 matrices below, with
peK @K and g € ImK 4 ImK’.

q 0 O qg O 0 0
Dg=10 —q 0], Sq=10 ¢ 0], Xo=|-p
0 0 O 0 0 —2q 0

® The remaining basis elements can be chosen to be of the form

ioj 0 O
D,'J: 0 I'O_j 0
0 0 0

where j o j = k over H, but stands for nesting over Q. TRIALITY!
J g



3 X 3 Magic Square Subalgebras

Subalgebras

@ All algebras in both magic squares are subalgebras of eg!
® ¢g(_p4) = 50(12,4) +128.

@ The 128 is a Majorana—Weyl spinor rep of s0(12,4).

@ The 128 contains spinor reps of each 2 x 2 algebra.
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3 X 3 Magic Square Subalgebras

Particle Physics

Fundamental particles (leptons and quarks) are Lorentz (s0(3,1))
spinors, and carry representations of electromagnetism (“charge”;
u(1)), the weak interaction (su(2).), and the strong interaction
(“color"; su(3)).

Mediators (photons, vector bosons, gluons) are Lorentz vectors,
and carry (adjoint?) representations of the interactions.

Want simultaneous representations of the Lorentz group SO(3,1)
and the Standard Model group U(1) x SU(2), x SU(3).
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3 X 3 Magic Square Subalgebras

Guiding Principle #3

’AII representations live in 23!‘

¢g(—24) = 50(12, 4) + spinors
50(12,4) D s0(3,1) + s0(7,3) + s0(2)
(3,1)
(3,1)

3,1
D 50(3,1) +s0(4) + 50(3,3) +50(2)
D 50(3,1) + su(2) + su(2)g + su(3)c + u(l) + s0(2)

)
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SUMMARY

Lie algebras are real!
The 3 X 3 structure is broken to 2 X 2.
All representations live in eg!

¢g(—24) = 50(12, 4) + spinors
50(12,4) D s0(3,1) & su(3) ®su(2) pu(l)"®C”
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