Active Engagement: Lessons learned from the Paradigms and Bridge projects

Corinne Manogue \& Tevian Dray

Departments of Physics \& Mathematics
Oregon State University
http://physics.oregonstate.edu/~corinne http://math.oregonstate.edu/~tevian

Oregon State

Get Ready:

Please sit with one or two partners.

For each group, pick up:

- a small whiteboard
- a whiteboard pen
- a high tech eraser (i.e. tissue/napkin)
- a set of colored letters

Teaching

Good teaching is like picking up someone else's baby.

Using the Quaternions to Implement Rotations

Tevian Dray \& Corinne Manogue

Departments of Mathematics \& Physics
Oregon State University
http://math.oregonstate.edu/~tevian
http://physics.oregonstate.edu/~corinne

OSU

Oregon State

Introduction

3-d rotations: Aeronautics, robotics, computer graphics, ... New Content: Use quaternions to implement rotations

Trigonometry

Polar coordinates: $x=r \cos \theta ; y=r \sin \theta$.

Research-Based Instruction

Things to consider:

- Whenever possible, base your instruction on what is known about incoming student resources.
- Example: Dr. Emily Smith (OSU 2016) showed that many upper-division physics students know triangle trigonometry, but not unit-circle trigonometry. This causes problems with complex numbers.
Classroom implementation:
- Implication: Use the circle simulation.

Simulation/Demo

Things to consider:

- Decide between black box or open coding.
- Show geometry and/or time dependence.
- Plan specific questions: Students need to be taught to ask relevant questions or to explore parameter space.

Classroom implementation:

- Stand behind students to see if they are having problems with the computer.

Complex Plane

$\mathbb{C}=\mathbb{R} \oplus i \mathbb{R}$

$$
i^{2}=-1
$$

$$
\begin{aligned}
& (x, y) \longmapsto x+i y \\
& x+i y=r \cos \theta+i r \sin \theta=r e^{i \theta}
\end{aligned}
$$

Special case: $e^{ \pm i \pi / 2}= \pm i$

$$
e^{i \pi}+1=0
$$

Representing Complex Numbers

- Please stand up.
- Use left hand.
- Real axis points forward.
- Imaginary axis points upward.

Show me:

- 1
- $2 i$
- $1+i$

Kinesthetic Activity

Things to consider:

- Everyone is awake!
- Teacher can see what everyone is thinking.
- Highlights geometric reasoning.
- Students get geometric cues from others.
- Students must make a decision.
- Student can be asked to translate representations.

Classroom Implementation:

- Please stand up.
- Show me
- Thank you, you can sit down.

Multiplication by i

$$
(1+i) i=i-1
$$

If a complex number is multiplied by i, the corresponding vector is:
A: Reflected about the x-axis
B: Reflected about the y-axis
C: Rotated by $\frac{\pi}{2}\left(90^{\circ}\right)$ counterclockwise
D: Rotated by $\frac{\pi}{2}\left(90^{\circ}\right)$ clockwise

DO NOT VOTE UNTIL TOLD TO DO SO!

Multiplication by i

Multiplication by i: $\quad(x+i y) i=i x+i^{2} y=-y+i x$

(Rotates counterclockwise by θ !)

Concept Tests/Peer Instruction/Clickers

Things to consider:

- Asks students to make a commitment.
- Asks students to defend an answer.
- Good questions: conceptual, focus on common mistakes.

Classroom implementation:

- 3 "response" systems: clickers, ABCD cards, (whiteboards).
- Two stages (or gather responses and discuss).
- Simultaneous and anonymous.
- Convince your neighbor.

Quaternions

$$
\mathbb{H}=\mathbb{C} \oplus \mathbb{C} j
$$

$$
\begin{gathered}
q=(x+y i)+(z+w i) j=x+y i+z j+w k \\
i j=k=-j i ; i^{2}=j^{2}=k^{2}=-1
\end{gathered}
$$

\mathbb{H} is for Hamilton! (\mathbb{Q} denotes rationals)
Calculate with your group: $i q$ and $q i$

iq vs. $q i$

Small Group Activity

Things to consider:

- Can emphasize more complex problems/reasoning.
- Student practice problem solving themselves.
- Equity: moves office hours into the classroom.

Classroom implementation:

- You have 10 min., GO!
- Who needs help?
- Do you need more time?
- Pause.

Conjugation

$$
q=x+i y+j z+k w
$$

$$
i q=i x-y+k z-j w
$$

$$
q i=i x-y-k z+j w
$$

$i q i=-x-i y+j z+k w$
$-i q i=x+i y-j z-k w$
(rotation in $j k$-plane)

$$
q \longmapsto e^{i \theta / 2} q e^{-i \theta / 2}
$$

- $1 \longmapsto 1 ; i \longmapsto i$
- Rotates by θ "about i " (in $j k$-plane)
- $q \longmapsto e^{j \theta / 2} q e^{-j \theta / 2}$ rotates about j, etc.
$\therefore \mathrm{SO}(3)$, the rigid rotations in 3 dimensions

Lecture (vs. Activities)

The Instructor:

- Paints big picture.
- Inspires.
- Covers lots fast.
- Models speaking.
- Models problem-solving.
- Controls questions.
- Makes connections.
- Demonstrates new complicated reasoning.

The Students:

- Focus on subtleties.
- Experience delight.
- Slow, but in depth.
- Practice speaking.
- Practice problem-solving.
- Control questions.
- Make connections.
- Discover questions about what is complicated.

Generalizations

Use to model particle physics
http://octonions.geometryof.org/GO

Story Telling

Plum Muffins

Story telling is memorable.

Please return:

Please clean up your toys:

- Erase your whiteboard.
- Return the ABCD cards, whiteboard, and pen.

