Octions: An E_8 Description of the Standard Model

R

Tevian Dray

Department of Mathematics Oregon State University tevian@math.oregonstate.edu

Corinne Manogue

Department of Physics Oregon State University corinne@physics.oregonstate.edu

(supported by FQXi and the John Templeton Foundation)

References

This work:

An octonionic construction of E8 and the Lie algebra magic square, Wilson, Dray, & Manogue, Innov. Incidence Geom. (to appear), arXiv:2204.04996.

Octions: An E8 description of the Standard Model, Manogue, Dray, &

Wilson, J. Math. Phys. 63, 081703 (2022), arXiv:2204.05310.

Our group: Fairlie & Manogue (1986, 1987), Manogue & Sudbery (1989), Schray (PhD 1994), Manogue & Schray (1993), Dray & Manogue (1998ab, 1999), Manogue & Dray (1999), Dray, Janesky, & Manogue (2000), Dray, Manogue, & Okubo (2002), Dray & Manogue (CAA 2000, CMUC 2010), Manogue & Dray (2010), Wangberg (PhD 2007), Wangberg & Dray (JMP 2013, JAA 2014), Dray, Manogue, & Wilson (CMUC 2014), Kincaid (MS 2012), Kincaid and Dray (MPLA 2014), Dray, Huerta, & Kincaid (LMP 2014)

Others: Jordan (1933), Jordan, von Neumann, & Wigner (1934), Freudenthal (1954, 1964), Tits (1966), Vinberg (1966), Gürsey, Ramond, & Sikivie (1976), Olive & West (1983), Kugo & Townsend (1983), Günaydin & Gürsey (1987), Chung & Sudbery (1987), Goddard, Nahm, Olive & Ruegg (1987), Corrigan & Hollowood (1988), Dixon (1994), Okubo (1995), Günaydin, Koepsell, & Nicolai (2001), Barton & Sudbery (2003), Cederwall (2007), Lisi (2007, 2010), Baez & Huerta (2010), Chester, Marran, & Rios (2021), Furey (2015), Furey & Hughes (2022ab)

The Freudenthal–Tits Magic Square

Freudenthal (1964), Tits (1966):

	\mathbb{R}	\mathbb{C}	\mathbb{H}	\bigcirc
\mathbb{R}	\mathfrak{a}_1	\mathfrak{a}_2	¢3	f4
\mathbb{C}	\mathfrak{a}_2	$\mathfrak{a}_2\oplus\mathfrak{a}_2$	\mathfrak{a}_5	\mathfrak{e}_6
H	¢3	\mathfrak{a}_5	\mathfrak{d}_6	¢7
\bigcirc	f4	¢ ₆	¢7	¢8

Vinberg (1966):

 $sa(3, \mathbb{A} \otimes \mathbb{B}) \oplus der(\mathbb{A}) \oplus der(\mathbb{B})$ $der(\mathbb{H}) = \mathfrak{so}(3); \quad der(\mathbb{O}) = \mathfrak{g}_2$

Goal:

Description as symmetry groups

[Barton & Sudbery (2003), Wangberg (PhD 2007), Dray & Manogue (CMUC 2010), Wangberg & Dray (JMP 2013, JAA 2014), Dray, Manogue, & Wilson (CMUC 2014), Wilson, Dray, & Manogue (2022)]

Guiding Principle #1

Lie algebras are real!

(signature matters) so(3,1) has boosts and rotations

	\mathbb{R}	\mathbb{C}	H	O
\mathbb{R}'	$\mathfrak{su}(3,\mathbb{R})$	$\mathfrak{su}(3,\mathbb{C})$	$\mathfrak{su}(3,\mathbb{H})$	f4
\mathbb{C}'	$\mathfrak{sl}(3,\mathbb{R})$	$\mathfrak{sl}(3,\mathbb{C})$	$\mathfrak{sl}(3,\mathbb{H})$	€ ₆₍₋₂₆₎
'⊮	$\mathfrak{sp}(6,\mathbb{R})$	$\mathfrak{su}(3,3,\mathbb{C})$	$\mathfrak{d}_{6(-6)}$	¢7(−25)
\mathbb{O}'	Ĵ4(4)	¢ ₆₍₂₎	$\mathfrak{e}_{7(-5)}$	€ ₈₍₋₂₄₎

Guiding Principle #2

The 3×3 structure is broken to 2×2 .

$$\mathcal{P} = \begin{pmatrix} P & \theta \\ -\theta^{\dagger} & n \end{pmatrix} \qquad \mathcal{M} = \begin{pmatrix} M & 0 \\ 0 & 1 \end{pmatrix}$$
$$\mathcal{P} \longmapsto \mathcal{MPM}^{-1} \implies P \longmapsto \mathcal{MPM}^{-1}, \ \theta \longmapsto \mathcal{M\theta}$$
$$\mathcal{P} \longmapsto [\mathcal{A}, \mathcal{P}] \implies P \longmapsto [\mathcal{A}, P], \ \theta \longmapsto \mathcal{A\theta}$$

Idea: Adjoint and spinor actions at same time! Example: $\mathcal{M} \in \mathcal{E}_6$, $\mathcal{A} \in \mathfrak{e}_6$, $\mathcal{P} \in \mathfrak{e}_6$

Summary: 2×2 Magic Square

- The algebras in the 2 \times 2 magic square are $\mathfrak{su}(2, \mathbb{K}' \otimes \mathbb{K})$.
- Each algebra is generated by the 2 × 2 matrices below, with $p \in \mathbb{K}' \otimes \mathbb{K}$ and $q \in \operatorname{Im}\mathbb{K} + \operatorname{Im}\mathbb{K}'$.

$$D_q = \begin{pmatrix} q & 0 \\ 0 & -q \end{pmatrix}, \qquad X_p = \begin{pmatrix} 0 & p \\ -\overline{p} & 0 \end{pmatrix}$$

Idea: rotations/boosts acting on $\mathbb{K}' \oplus \mathbb{K}$: $D_i = D_{1i}; D_L = D_{UL}; X_i = X_{iU}; X_L = X_{1L}$

• The remaining basis elements are of the form

$$D_{i,j} = \begin{pmatrix} i \circ j & 0 \\ 0 & i \circ j \end{pmatrix} = \frac{1}{2} [D_i, D_j]$$

where $i \circ j \doteq k$ over \mathbb{H} , but stands for nesting over \mathbb{O} .

Summary: 3×3 Magic Square

- The algebras in the 3×3 magic square are $\mathfrak{su}(3, \mathbb{K}' \otimes \mathbb{K})$.
- Each algebra is generated by the 3×3 matrices below, with $p \in \mathbb{K}' \otimes \mathbb{K}$ and $q \in \mathrm{Im}\mathbb{K} + \mathrm{Im}\mathbb{K}'$.

$$D_{q} = \begin{pmatrix} q & 0 & 0 \\ 0 & -q & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad S_{q} = \begin{pmatrix} q & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & -2q \end{pmatrix}, \quad X_{p} = \begin{pmatrix} 0 & p & 0 \\ -\overline{p} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$Y_{p} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & p \\ 0 & -\overline{p} & 0 \end{pmatrix}, \quad Z_{p} = \begin{pmatrix} 0 & 0 & -\overline{p} \\ 0 & 0 & 0 \\ p & 0 & 0 \end{pmatrix}$$

• The remaining basis elements can be chosen to be of the form

$$D_{i,j} = egin{pmatrix} i \circ j & 0 & 0 \ 0 & i \circ j & 0 \ 0 & 0 & 0 \end{pmatrix}$$

where $i \circ j \doteq k$ over \mathbb{H} , but stands for nesting over \mathbb{O} . **TRIALITY!**

2 × 2 "half-split": (spin groups ...)

	\mathbb{R}	\mathbb{C}	H	O
\mathbb{R}'	so (2)	so (3)	$\mathfrak{so}(5)$	$\mathfrak{so}(9)$
\mathbb{C}'	$\mathfrak{so}(2,1)$	$\mathfrak{so}(3,1)$	$\mathfrak{so}(5,1)$	$\mathfrak{so}(9,1)$
\mathbb{H}'	$\mathfrak{so}(3,2)$	$\mathfrak{so}(4,2)$	so(6,2)	$\mathfrak{so}(10,2)$
\mathbb{O}'	$\mathfrak{so}(5,4)$	$\mathfrak{so}(6,4)$	$\mathfrak{so}(8,4)$	$\mathfrak{so}(12,4)$

3 × **3** "half-split": (... plus spinor reps)

	\mathbb{R}	\mathbb{C}	H	O
\mathbb{R}'	$\mathfrak{su}(3,\mathbb{R})$	$\mathfrak{su}(3,\mathbb{C})$	$\mathfrak{su}(3,\mathbb{H})$	Ĵ4
\mathbb{C}'	$\mathfrak{sl}(3,\mathbb{R})$	$\mathfrak{sl}(3,\mathbb{C})$	$\mathfrak{sl}(3,\mathbb{H})$	€ ₆₍₋₂₆₎
\mathbb{H}'	$\mathfrak{sp}(6,\mathbb{R})$	$\mathfrak{su}(3,3,\mathbb{C})$	$\mathfrak{d}_{6(-6)}$	¢ _{7(−25)}
0′	Ĵ4(4)	¢ ₆₍₂₎	€ ₇₍₋₅₎	€ ₈₍₋₂₄₎

- \bullet All algebras in both magic squares are subalgebras of $\mathfrak{e}_8!$
- $\mathfrak{e}_{8(-24)} = \mathfrak{so}(12, 4) + 128.$
- The 128 is a Majorana–Weyl representation of $\mathfrak{so}(12, 4)$.
- The 128 contains spinor reps of each 2×2 algebra.

All representations live in e_8 !

$$\begin{aligned} \mathfrak{e}_{8(-24)} &= \mathfrak{so}(12,4) + \text{spinors} \\ \mathfrak{so}(12,4) \supset \mathfrak{so}(3,1) + \mathfrak{so}(7,3) + \mathfrak{so}(2) \\ &\supset \mathfrak{so}(3,1) + \mathfrak{so}(4) + \mathfrak{so}(3,3) + \mathfrak{so}(2) \\ &\supset \mathfrak{so}(3,1) + \mathfrak{su}(2)_L + \mathfrak{su}(2)_R + \mathfrak{su}(3)_c + \mathfrak{u}(1) + \mathfrak{so}(2) \end{aligned}$$

Decomposition of $\mathfrak{so}(12, 4)$

Lorentz + $\mathfrak{so}(10)$ GUT

Spinors are complex

Color Decomposition of e_8

Jordan algebra

Decomposition of $\mathfrak{e}_8 \longrightarrow \mathfrak{e}_6$

$$\mathfrak{sl}(3,\mathbb{R}) + 3 \times 2 + \langle S_L \rangle$$

$$\mathfrak{so}(12,4) = \mathfrak{so}(9,1) + 10 \times 6 + \overbrace{\mathfrak{so}(3,3)}^{\mathfrak{so}(3,\mathbb{R})}$$

Majorana–Weyl spinors of both $\mathfrak{so}(9,1)$ & $\mathfrak{so}(3,3)$

$$128 = 16 \times (1 + 1 + 3 + \overline{3})$$

$$\mathfrak{e}_{8(-24)} = \underbrace{\mathfrak{e}_{6(-26)}}_{\mathfrak{so}(9,1)} + \underbrace{27 \times 6}_{16 \times 2 \times 3} + \mathfrak{sl}(3,\mathbb{R})$$

$$\mathfrak{so}(9,1)$$

$$\mathfrak{lo} \times 2 \times 3$$

Killing
duals

$$\mathfrak{e}_{6(-26)} = \mathfrak{so}(9,1) + \overbrace{16 \times 2}^{\mathsf{Killing}} + \langle S_L \rangle$$

 $\mathfrak{so}(9,1) \longmapsto \mathfrak{so}(2) + \mathfrak{so}(7,1) \longmapsto \mathfrak{so}(2) + \overbrace{\mathfrak{so}(3,1)}^{\mathsf{Lorentz}} + \overbrace{\mathfrak{so}(4)}^{\mathsf{weak}}$
 $\mathfrak{su}(2)_L + \mathfrak{su}(2)_R$

Everything in $e_{8(-24)}!$

$$\mathfrak{e}_{8(-24)} = \mathfrak{so}(12, 4) + \text{spinors}$$

$$= \mathfrak{e}_{6(-26)} + 27 \times 6 + \mathfrak{sl}(3, \mathbb{R}) \quad \text{gluons & quarks}$$

$$\mathfrak{so}(9, 1) + 2 \times 16 + \langle S_L \rangle \quad \text{leptons}$$

$$\mathfrak{so}(2) + \mathfrak{so}(3, 1) + \mathfrak{su}(2)_L + \mathfrak{su}(2)_R + 4 \times 4$$

$$\mathfrak{sgenerations} \quad \text{electroweak}$$

$$\mathfrak{mediators}$$

Corinne Manogue corinne@physics.oregonstate.edu Tevian Dray tevian@math.oregonstate.edu