Partial Derivatives in Calculus and Upper-Level Physics Courses

Corinne Manogue & Tevian Dray & The Paradigms in Physics Team February 6, 2018

Support

- National Science Foundation
 - DUE-9653250, 0231194, 0618877
 - DUE-0088901, 0231032, 0837829
 - DUE-1023120, 1323800
- Oregon State University
- Oregon Collaborative for Excellence in the Preparation of Teachers
- Grinnell College
- Mount Holyoke College
- Utah State University

Dissemination of Curriculum

- Old: Textbook authors determined order. lecture, reading, homework
- Now: Who determines the order?
 in-class activities, SWBQs/concept tests,
 mini-lectures, video, online short readings,
 flipping and backflipping, ...
- Challenge: How do we disseminate 2 decades of new holistic curriculum structures in the era of active engagement/online resources?

Learning Progressions

- Successively more sophisticated ways of thinking about a topic.
- Sequences that are supported by research on learner's ideas and skills.

Learning Progression for E&M Thermo Vec Calc Partial Derivatives Int Mech

Duschle et al., NRC, 2007 Plummer, 2012 Sikorski et al., 2009, 2010

Learning Progressions

- What is an effective content sequence?
- Different types of resources: activities, SWBQs, text bits, homework problems, ...
- What research supports these choices?

Learning Progressions

- Lower anchor grounded in prior ideas and skills students bring to the classroom.
- Upper anchor grounded in knowledge and practices of experts.

What is a Concept Image?

• Concept Image: the total cognitive structure that is associated with a concept, which includes all the mental pictures and associated properties and processes.

Tall and Vinner, Educ. Stud. Math., (1981).

Small White Board Questions (SWBQs)

- For this audience:
 - Write an element of your concept image of derivative.
- For students:
 - Write something that you know about derivatives.

Concept Image of Derivative

- Ratio
- Slope
- Limit
- Function
- Rate of Change
- Velocity
- Difference Quotient

Lower Anchor for Derivatives

Derivative is slope of tangent line.

Mechanics—Lower Division

This is a Function

$$v = \frac{dx}{dt}$$

Derivative = Speed=Slope

This is a Trajectory

$$\frac{\text{Nobody}}{\text{cares}} = \frac{dy}{dx}$$

Derivative = Slope

Mechanics—Upper Division

Trajectory

$$\vec{v} = \frac{d\vec{r}}{dt}$$

$$= \frac{dx}{dt}\hat{x} + \frac{dy}{dt}\hat{y}$$

- Speed is NOT slope.
- Velocity points in direction of slope.

Extended Framework

Process-	Graphical	Verbal	Symbolic	Numerical	Physical	
object	Slope	Rate of	Difference	Ratio of	Measurement	
layer		Change	Quotient	Changes		
Ratio		"avg. rate of change"	$\frac{f(x+\Delta x)-f(x)}{\Delta x}$	$\begin{array}{c} \frac{y_2 - y_1}{x_2 - x_1} \\ \text{numerically} \end{array}$	$\longrightarrow \prod_{i \in \mathcal{I}_i}$	
Limit		"inst. rate of change"	$\lim_{\Delta x \to 0} \cdots$	with Δx small	\rightarrow	
Function		"at any point/time"	$f'(x) = \dots$	$\begin{array}{c} \dots \\ \text{depends} \\ \text{on } x \end{array}$	tedious repeti- tion	
Process-		· · Symbolic · ·				
object lay	ver	Instrumental Understanding				
Function		rules to "take a derivative"				

Zandieh, CBMS Issues in Math Ed, 2000. Roundy, et al., RUME, 2015.

Name the Experiment

• Design an experiment to measure compressibility:

$$\beta_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T \quad vs. \quad \beta_S = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_S$$

Isothermal

Isentropic

Name the Experiment

Linear Regime vs. Strict Limit

• Which diagram(s) represent the derivative?

• average vs. approximation vs. exact

Thick Derivatives

- What counts as a derivative?
 - Mathematicians: bright line at strict derivative.
 - Physicists: bright line at "good enough."

Notations for Partial Derivatives

• Math vs Physics

$$f_{x} \equiv \frac{Of}{\partial x}$$

Mechanics

$$\vec{f} = f_x \hat{x} + f_y \hat{y}$$

• E & M

$$E_{x} = -\left(\frac{\partial V}{\partial x}\right)$$

Equations Encode Meaning

$$grad f = \langle f_x, f_y, f_z \rangle$$

$$\vec{\nabla}V = \frac{\partial V}{\partial x}\hat{x} + \frac{\partial V}{\partial y}\hat{y} + \frac{\partial V}{\partial z}\hat{z}$$

Which Aspects of Concept Image Are Cued?

- The importance of representations:

 Different representations cue different aspects of a student's concept image.
- Rule of Four:
 - Graphs
 - Equations
 - Words
 - Numerical

Concept Image of Gradient

• Use SWBQs to help students link elements of their concept image:

On your small white board, write ONE element of your concept image of gradient.

Kinesthetic Activity: Gradient

- Points in the direction of steepest change.
- Magnitude is slope.

Gradient: Which Direction?

Oregon State PER

Math Representations

• Functions of 2 variables

Physics Representations

- Functions of 3 variables
 - Equipotential Surfaces
 - 3-D Gradient Vectors
 - Electric Field Lines

Research on Partial Derivatives

- What information can be easily extracted from particular representations?
- How do students change from one representations to another?
- What does expert problem solving look like?

Representational Transformation

Rabindra Bajracharya

Evaluate $\left(\frac{\partial U}{\partial T}\right)_P$ at P=10 atm., T=410K using the information below.

P(atm.)	T(K)	V(cm ³)
10	300	1.32
10	310	1.44
10	320	1.57
10	330	1.71
10	340	1.85
10	350	2.00
10	360	2.15
10	370	2.32
10	380	2.49
10	390	2.67
10	400	2.86
10	410	3.05
10	420	3.25
10	430	3.47
10	440	3.69
10	450	3.91
10	460	4.15
10	470	4.40

Internal Energy U(T, V).

Contour Maps

Partial Derivatives Machine

David Roundy

Mike Vignal

"Raising" Surfaces/Contour Mats

Differentials/ Chain Rule Diagrams

Ian Founds

Experts in Thermo

Mary Bridget Kustusch

$$p(u,T)$$

$$u(v,T)$$

$$\left(\frac{\partial u}{\partial p}\right)_{s} = \left(\frac{\partial u}{\partial v_{s}}\right)\frac{\partial v}{\partial p/s}$$
(18)

$$P = \frac{Nk(C)^{3/3}}{(V-N6)^{3/3}} - \frac{aN^{2}}{V^{2}} = \frac{5NkC^{3/3}}{3(V-N6)^{3/3}} + \frac{2aN^{2}}{V^{3}} = \left(\frac{P}{\partial V}\right)_{5} = 0.$$
 (21)

$$U = \frac{3}{2} N k \left(\frac{C}{V - Nb}\right)^{2/3} - \frac{a N^{2}}{V} = \left(\frac{3}{3}\right) \frac{3}{2} N k C^{3/6} \left(\frac{1}{V - Nb}\right)^{3/3} + \frac{a N^{2}}{V^{2}} = \left(\frac{\partial U}{\partial V}\right) = B$$

$$(22)$$

$$\left(\frac{\partial U}{\partial P_s}\right) = \left(\frac{\partial U}{\partial V_s}\right) \left(\frac{\partial V}{\partial P_s}\right) = \frac{B}{2}$$

Conclusion

- The concept image of partial derivative has MANY, many, *many* elements!
- Experts use MANY representations.
- Different representations cue reasoning about different elements.
- Different subfields of mathematics and physics rely on different elements.
- Choose activities that foster connections between elements.
- Learning Progression: Order matters.