MTH 434 — HW #1 (Solution)

Let $\vec{u} = u_x \hat{x} + u_y \hat{y} + u_z \hat{z}$. Find two vectors \vec{v} and \vec{w} such that $\vec{u} = \vec{v} \times \vec{w}$.

Idea:

If $\vec{u} = \vec{v} \times \vec{w}$, then $\vec{u} \perp \vec{v}$ and $\vec{u} \perp \vec{w}$. Furthermore, if $\vec{v} \parallel \vec{w}$, then $\vec{v} \times \vec{w} = 0$, so that (of course) $\{\vec{u}, \vec{v}, \vec{w}\}$ must be linearly independent. This suggests a procedure: Find *any* linearly independent vectors \vec{v}, \vec{w} which are both perpendicular to \vec{u} . Then $\vec{u} \parallel \vec{v} \times \vec{w}$, and it only remains to suitably rescale \vec{v} and/or \vec{w} .

Solution:

Suppose $\vec{\boldsymbol{u}} = u_x \hat{\boldsymbol{x}} + u_y \hat{\boldsymbol{y}} + u_z \hat{\boldsymbol{z}}.$

Consider first the case $u_x = 0$, which implies that $\vec{u} \perp \hat{x}$. The properties of the cross product imply that $\hat{x} \times \vec{u}$ is perpendicular to both \hat{x} and \vec{u} . Thus, \hat{x} and $\hat{x} \times \vec{u} = -u_z \hat{y} + u_y \hat{z}$ are two linearly independent vectors perpendicular to \vec{u} , and direct computation shows that $(\hat{x} \times \vec{u}) \times \hat{x} = \vec{u}$.

Now suppose that $u_x \neq 0$, so that \vec{u} has a nonzero \hat{x} component. An easy way to obtain two linearly independent vectors orthogonal to \vec{u} is to assume that one is in the *xy*-plane (no \hat{z} component) and the other is in the *xz*-plane (no \hat{y} component). Two such vectors are $u_x \hat{y} - u_y \hat{x}$ and $u_z \hat{x} - u_x \hat{z}$; notice that these vectors are just $\hat{z} \times \vec{u}$ and $\hat{y} \times \vec{u}$, respectively. Rescaling these vectors slightly and taking the cross product, we obtain

$$\vec{u} = u_x \left(\hat{y} - \frac{u_y}{u_x} \hat{x} \right) \times \left(\hat{z} - \frac{u_z}{u_x} \hat{x} \right)$$

from which various choices of \vec{v} and \vec{w} can be read off, depending on the scaling. In this form, it is obvious that \vec{v} and \vec{w} are independent (and that we must require $u_x \neq 0$).

(We have also verified a special case of the identify $(\vec{a} \times \vec{u}) \times (\vec{b} \times \vec{u}) = ((\vec{a} \times \vec{b}) \cdot \vec{u}) \vec{u}$.)

This is not the only solution! (Note that \vec{v} and \vec{w} are not perpendicular. This condition can of course also be satisfied, but the solution becomes more complicated.)

Alternate Solution:

Rewrite each basis vector as a cross product of the other two basis vectors. The goal is to factor the resulting "polynomial" $\vec{u} = u_x (\hat{y} \times \hat{z}) + u_y (\hat{z} \times \hat{x}) + u_z (\hat{x} \times \hat{y})$.

If $u_x = 0$, then $\vec{u} = u_y (\hat{z} \times \hat{x}) + u_z (\hat{x} \times \hat{y})$, which has a common factor of \hat{x} . Thus, $\vec{u} = (u_y \hat{z} - u_z \hat{y}) \times \hat{x}$, which is the same solution as above.

If $u_x \neq 0$, we can still factor the first two terms as $u_x (\hat{y} \times \hat{z}) + u_y (\hat{z} \times \hat{x}) = (u_x \hat{y} - u_y \hat{x}) \times \hat{z}$. We'd like to include the third term, $u_z (\hat{x} \times \hat{y})$. Reversing the order and assuming $u_x \neq 0$, we get

$$u_{z}\left(\hat{\boldsymbol{x}}\times\hat{\boldsymbol{y}}\right) = -u_{z}\left(\hat{\boldsymbol{y}}\times\hat{\boldsymbol{x}}\right) = \hat{\boldsymbol{y}}\times\left(-u_{z}\hat{\boldsymbol{x}}\right) = u_{x}\hat{\boldsymbol{y}}\times\left(-\frac{u_{z}}{u_{x}}\right)\hat{\boldsymbol{x}}$$

Now for the tricky part: The first two terms have the factor $u_x \hat{y} - u_y \hat{x}$, not $u_x \hat{y}$ alone. But if we use the first factor in the third term, the term involving u_y disappears (since $\hat{x} \times \hat{x} = \vec{0}$)! In other words,

$$u_z \left(\hat{\boldsymbol{x}} \times \hat{\boldsymbol{y}} \right) = \dots = u_x \hat{\boldsymbol{y}} \times \left(-\frac{u_z}{u_x} \right) \hat{\boldsymbol{x}} = \left(u_x \hat{\boldsymbol{y}} - u_y \hat{\boldsymbol{x}} \right) \times \left(-\frac{u_z}{u_x} \right) \hat{\boldsymbol{x}}$$

Putting this all together, we get

$$\vec{u} = (u_x \hat{y} - u_y \hat{x}) \times \left(\hat{z} - \frac{u_z}{u_x} \hat{x} \right)$$

which again agrees with the solution above. This is not the only solution!