MTH 434 - HW \#1

(Solution)
Let $\overrightarrow{\boldsymbol{u}}=u_{x} \hat{\boldsymbol{x}}+u_{y} \hat{\boldsymbol{y}}+u_{z} \hat{\boldsymbol{z}}$. Find two vectors $\overrightarrow{\boldsymbol{v}}$ and $\overrightarrow{\boldsymbol{w}}$ such that $\overrightarrow{\boldsymbol{u}}=\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{w}}$.
Idea:
If $\overrightarrow{\boldsymbol{u}}=\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{w}}$, then $\overrightarrow{\boldsymbol{u}} \perp \overrightarrow{\boldsymbol{v}}$ and $\overrightarrow{\boldsymbol{u}} \perp \overrightarrow{\boldsymbol{w}}$. Furthermore, if $\overrightarrow{\boldsymbol{v}} \| \overrightarrow{\boldsymbol{w}}$, then $\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{w}}=0$, so that (of course) $\{\overrightarrow{\boldsymbol{u}}, \overrightarrow{\boldsymbol{v}}, \overrightarrow{\boldsymbol{w}}\}$ must be linearly independent. This suggests a procedure: Find any linearly independent vectors $\overrightarrow{\boldsymbol{v}}, \overrightarrow{\boldsymbol{w}}$ which are both perpendicular to $\overrightarrow{\boldsymbol{u}}$. Then $\overrightarrow{\boldsymbol{u}} \| \overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{w}}$, and it only remains to suitably rescale $\overrightarrow{\boldsymbol{v}}$ and/or $\overrightarrow{\boldsymbol{w}}$.

Solution:

Suppose $\overrightarrow{\boldsymbol{u}}=u_{x} \hat{\boldsymbol{x}}+u_{y} \hat{\boldsymbol{y}}+u_{z} \hat{\boldsymbol{z}}$.
Consider first the case $u_{x}=0$, which implies that $\overrightarrow{\boldsymbol{u}} \perp \hat{\boldsymbol{x}}$. The properties of the cross product imply that $\hat{\boldsymbol{x}} \times \overrightarrow{\boldsymbol{u}}$ is perpendicular to both $\hat{\boldsymbol{x}}$ and $\overrightarrow{\boldsymbol{u}}$. Thus, $\hat{\boldsymbol{x}}$ and $\hat{\boldsymbol{x}} \times \overrightarrow{\boldsymbol{u}}=-u_{z} \hat{\boldsymbol{y}}+u_{y} \hat{\boldsymbol{z}}$ are two linearly independent vectors perpendicular to $\overrightarrow{\boldsymbol{u}}$, and direct computation shows that $(\hat{\boldsymbol{x}} \times \overrightarrow{\boldsymbol{u}}) \times \hat{\boldsymbol{x}}=\overrightarrow{\boldsymbol{u}}$.
Now suppose that $u_{x} \neq 0$, so that $\overrightarrow{\boldsymbol{u}}$ has a nonzero $\hat{\boldsymbol{x}}$ component. An easy way to obtain two linearly independent vectors orthogonal to $\overrightarrow{\boldsymbol{u}}$ is to assume that one is in the $x y$-plane (no $\hat{\boldsymbol{z}}$ component) and the other is in the $x z$-plane (no $\hat{\boldsymbol{y}}$ component). Two such vectors are $u_{x} \hat{\boldsymbol{y}}-u_{y} \hat{\boldsymbol{x}}$ and $u_{z} \hat{\boldsymbol{x}}-u_{x} \hat{\boldsymbol{z}}$; notice that these vectors are just $\hat{\boldsymbol{z}} \times \overrightarrow{\boldsymbol{u}}$ and $\hat{\boldsymbol{y}} \times \overrightarrow{\boldsymbol{u}}$, respectively. Rescaling these vectors slightly and taking the cross product, we obtain

$$
\overrightarrow{\boldsymbol{u}}=u_{x}\left(\hat{\boldsymbol{y}}-\frac{u_{y}}{u_{x}} \hat{\boldsymbol{x}}\right) \times\left(\hat{\boldsymbol{z}}-\frac{u_{z}}{u_{x}} \hat{\boldsymbol{x}}\right)
$$

from which various choices of $\overrightarrow{\boldsymbol{v}}$ and $\overrightarrow{\boldsymbol{w}}$ can be read off, depending on the scaling. In this form, it is obvious that $\overrightarrow{\boldsymbol{v}}$ and $\overrightarrow{\boldsymbol{w}}$ are independent (and that we must require $u_{x} \neq 0$).
(We have also verified a special case of the identify $(\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{u}}) \times(\overrightarrow{\boldsymbol{b}} \times \overrightarrow{\boldsymbol{u}})=((\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{b}}) \cdot \overrightarrow{\boldsymbol{u}}) \overrightarrow{\boldsymbol{u}}$.)
This is not the only solution! (Note that $\overrightarrow{\boldsymbol{v}}$ and $\overrightarrow{\boldsymbol{w}}$ are not perpendicular. This condition can of course also be satisfied, but the solution becomes more complicated.)

Alternate Solution:

Rewrite each basis vector as a cross product of the other two basis vectors. The goal is to factor the resulting "polynomial" $\overrightarrow{\boldsymbol{u}}=u_{x}(\hat{\boldsymbol{y}} \times \hat{\boldsymbol{z}})+u_{y}(\hat{\boldsymbol{z}} \times \hat{\boldsymbol{x}})+u_{z}(\hat{\boldsymbol{x}} \times \hat{\boldsymbol{y}})$.
If $u_{x}=0$, then $\overrightarrow{\boldsymbol{u}}=u_{y}(\hat{\boldsymbol{z}} \times \hat{\boldsymbol{x}})+u_{z}(\hat{\boldsymbol{x}} \times \hat{\boldsymbol{y}})$, which has a common factor of $\hat{\boldsymbol{x}}$. Thus, $\overrightarrow{\boldsymbol{u}}=\left(u_{y} \hat{\boldsymbol{z}}-u_{z} \hat{\boldsymbol{y}}\right) \times \hat{\boldsymbol{x}}$, which is the same solution as above.
If $u_{x} \neq 0$, we can still factor the first two terms as $u_{x}(\hat{\boldsymbol{y}} \times \hat{\boldsymbol{z}})+u_{y}(\hat{\boldsymbol{z}} \times \hat{\boldsymbol{x}})=\left(u_{x} \hat{\boldsymbol{y}}-u_{y} \hat{\boldsymbol{x}}\right) \times \hat{\boldsymbol{z}}$. We'd like to include the third term, $u_{z}(\hat{\boldsymbol{x}} \times \hat{\boldsymbol{y}})$. Reversing the order and assuming $u_{x} \neq 0$, we get

$$
u_{z}(\hat{\boldsymbol{x}} \times \hat{\boldsymbol{y}})=-u_{z}(\hat{\boldsymbol{y}} \times \hat{\boldsymbol{x}})=\hat{\boldsymbol{y}} \times\left(-u_{z} \hat{\boldsymbol{x}}\right)=u_{x} \hat{\boldsymbol{y}} \times\left(-\frac{u_{z}}{u_{x}}\right) \hat{\boldsymbol{x}}
$$

Now for the tricky part: The first two terms have the factor $u_{x} \hat{\boldsymbol{y}}-u_{y} \hat{\boldsymbol{x}}$, not $u_{x} \hat{\boldsymbol{y}}$ alone. But if we use the first factor in the third term, the term involving u_{y} disappears (since $\hat{\boldsymbol{x}} \times \hat{\boldsymbol{x}}=\overrightarrow{\mathbf{0}}$)! In other words,

$$
u_{z}(\hat{\boldsymbol{x}} \times \hat{\boldsymbol{y}})=\ldots=u_{x} \hat{\boldsymbol{y}} \times\left(-\frac{u_{z}}{u_{x}}\right) \hat{\boldsymbol{x}}=\left(u_{x} \hat{\boldsymbol{y}}-u_{y} \hat{\boldsymbol{x}}\right) \times\left(-\frac{u_{z}}{u_{x}}\right) \hat{\boldsymbol{x}}
$$

Putting this all together, we get

$$
\overrightarrow{\boldsymbol{u}}=\left(u_{x} \hat{\boldsymbol{y}}-u_{y} \hat{\boldsymbol{x}}\right) \times\left(\hat{\boldsymbol{z}}-\frac{u_{z}}{u_{x}} \hat{\boldsymbol{x}}\right)
$$

which again agrees with the solution above. This is not the only solution!

