MTH 434/534

HW #2

1. DECOMPOSABLE FORMS

Denote the *p*-forms in \mathbb{R}^n by $\bigwedge^p(\mathbb{R}^n)$. A typical 1-form in \mathbb{R}^2 would therefore take the form $F = F_x \, dx + F_y \, dy \in \bigwedge^1(\mathbb{R}^2)$.

A *p*-form $\beta \in \bigwedge^p(\mathbb{R}^n)$ is called *decomposable* if there exist 1-forms $\alpha_i \in \bigwedge^1(\mathbb{R}^n)$ with

$$\beta = \alpha_1 \wedge \dots \wedge \alpha_p$$

(a) Show that all elements of $\wedge^2(\mathbb{R}^3)$, that is, all 2-forms in \mathbb{R}^3 , are decomposable. In other words, show that

$$H = H_x \, dy \wedge dz + H_y \, dz \wedge dx + H_z \, dx \wedge dy$$

is decomposable.

HINT: Consider the previous assignment!

You may cite your solution to the previous assignment without proof, so long as an explicit reference is given ("see HW #1"). If you do this, it wouldn't hurt to include a copy of your previous assignment.

- (b) Find an example of an *indecomposable* 2-form $\gamma \in \bigwedge^{p}(\mathbb{R}^{n})$. *HINT: Don't work in* \mathbb{R}^{3} ...
- (c) Is $\gamma \wedge \gamma = 0$? Should it be? Can it be?
- (d) MTH 534 students only (or extra credit): Show that all 3-forms are decomposable in R⁴.
 Extra Credit: Can you argue that all elements of ∧ⁿ⁻¹(Rⁿ) are decomposable?

2. PICTURES OF FORMS

Let $\alpha = 3 dx$ and $\beta = 4 dy$.

- (a) Draw a single picture showing the "stacks" corresponding to both α and β.
 You may want to use different colors for the stacks corresponding to α and β. Your drawing should be correctly scaled.
- (b) Draw a separate picture showing the stack corresponding to $\gamma = \alpha + \beta$.
- (c) Choose a vector $\vec{v} \in \mathbb{R}^2$ that is *not* parallel to the coordinate axes. Add \vec{v} to your previous diagrams and use them to compute $\alpha(\vec{v})$, $\beta(\vec{v})$, and $\gamma(\vec{v})$. Your computation should be geometric, not algebraic.
- (d) Did you obtain $\gamma(\vec{v}) = \alpha(\vec{v}) + \beta(\vec{v})$? Should you have?