CROSS PRODUCT

1. Let $\vec{\boldsymbol{u}} = u_x \,\hat{\boldsymbol{x}} + u_y \,\hat{\boldsymbol{y}} + u_z \,\hat{\boldsymbol{z}}$ be a vector in \mathbb{R}^3 . Determine two vectors $\vec{\boldsymbol{v}}$ and $\vec{\boldsymbol{w}}$ such that $\vec{\boldsymbol{u}} = \vec{\boldsymbol{v}} \times \vec{\boldsymbol{w}}$.

It is possible to solve this problem by brute force; find a better way if you can. HINT: What properties should \vec{v} and \vec{w} have?

NOTATION:

- u_x , u_y , u_z are constants, not partial derivatives;
- \hat{x} , \hat{y} , \hat{z} are the standard basis vectors in \mathbb{R}^3 , also written as \hat{i} , \hat{j} , \hat{k} .