CROSS PRODUCT

1. Let $\overrightarrow{\boldsymbol{u}}=u_{x} \hat{\boldsymbol{x}}+u_{y} \hat{\boldsymbol{y}}+u_{z} \hat{\boldsymbol{z}}$ be a vector in \mathbb{R}^{3}. Determine two vectors $\overrightarrow{\boldsymbol{v}}$ and $\overrightarrow{\boldsymbol{w}}$ such that

$$
\overrightarrow{\boldsymbol{u}}=\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{w}} .
$$

It is possible to solve this problem by brute force; find a better way if you can.
HINT: What properties should $\overrightarrow{\boldsymbol{v}}$ and $\overrightarrow{\boldsymbol{w}}$ have?
NOTATION:

- u_{x}, u_{y}, u_{z} are constants, not partial derivatives;
- $\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}, \hat{\boldsymbol{z}}$ are the standard basis vectors in \mathbb{R}^{3}, also written as $\hat{\boldsymbol{\imath}}, \hat{\boldsymbol{\jmath}}, \hat{\boldsymbol{k}}$.

