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Abstract

These notes are intended as a very concise summary of the basic idea of differential
forms and curvature, intended for those studying general relativity. Please bear in
mind when reading this document that it is not necessary to follow the details of each
and every step. Rather, it is important to have a basic grasp of what is going on, and
to be able to use the formalism here to calculate curvature.

1 Introduction

This is a very concise summary of the basic idea of curvature, intended for those studying
general relativity. Along the way, we encounter covariant differentiation and affine con-
nections in considerable generality, and then discusses how to compute curvature in two
important special cases, namely using a coordinate basis and using an orthonormal basis.
The latter method requires familiarity with differential forms; the former does not.

Please bear in mind when reading this document that it is not necessary to follow the
details of each and every step. Rather, it is important to have a basic grasp of what is going
on, and to be able to calculate curvature using any one method.

2 Motivation: Differential Forms in R
3

What are the possible integrands in (Euclidean) R
3? Line integrals have integrands of the

form ~F · d~r, surface integrals have integrands of the form ~F · d~A, and volume integrals
have integrands of the form f dV . These objects are our prototypes for 1-forms, 2-forms,
and 3-forms, respectively. We also include functions f as 0-forms ; “integration” of a 0-form
consists simply of evaluating the function at given points.
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2.1 1-forms

Consider the Master Formula

df = ~∇f · d~r (1)

relating the multivariable differential df to the gradient. Here, d~r is the infinitesimal dis-
placement vector between nearby points, given in rectangular coordinates 1

d~r = dx x̂ + dy ŷ + dz ẑ (2)

More generally, given any vector field ~F , the 1-form associated with ~F is given by

F = ~F · d~r (3)

We write
∧1(R3) for the collection of 1-forms on (Euclidean) R

3; when the underlying space
is clear from context, we often abbreviate this to

∧1. Since

df =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz (4)

it is clear that {dx, dy, dz} is a basis for
∧1, just as {x̂, ŷ, ẑ} is a basis for vector fields. 2

In fact, basis transformations naturally involve Jacobians, since (4) naturally involves both
calculus and linear algebra.

Furthermore, there is a natural inner product on 1-forms, given by

g(~F · d~r, ~G · d~r) = ~F · ~G (5)

This inner product makes {dx, dy, dz} into an orthonormal basis for
∧1. This fact is often

expressed by writing
ds2 = d~r · d~r = dx2 + dy2 + dz2 (6)

and noting that the infinitesimal distances in this statement of the Pythagorean Theorem
are precisely our orthonormal basis vectors. It is well worth considering what the analogous
statements would be in other coordinate systems, such as spherical coordinates.

2.2 Multiplication of 1-forms

We would like to continue in the same vein, and define 2-forms to be objects of the form
~F · d~A. However, this isn’t quite right. The problem is that, as a vector object, d~A has
an orientation. Put differently, we want dy dx to be different from dx dy; there should be a
relative factor of −1 between these two expressions.

We therefore define an antisymmetric product on 1-forms, so that

dy ∧ dx = −dx ∧ dy (7)

1More formally, d~r is a vector-valued 1-form.
2These spaces are modules over the ring of functions, which just means that they behave like vector

spaces, but with scalars that are functions, rather than numbers.
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which is called the wedge or exterior product. We henceforth interpret objects such as ~F ·d~A

as involving linear combinations of such products; these are 2-forms.
We extend the wedge product to higher rank differential forms by associativity. In R

3,
we have the following spaces and bases:

∧0
: {1} (8)

∧1
: {dx, dy, dz} (9)

∧2
: {dy ∧ dz, dz ∧ dx, dx ∧ dy} (10)

∧3
: {dx ∧ dy ∧ dz} (11)

Note that all higher rank forms are 0, since dx ∧ dx = 0, etc.

2.3 Duality

There is clearly a relationship between 0-forms and 3-forms, given by relating f and f dV .
We can therefore define a map from 0-forms to 3-forms, which we write as

∗f = f dV (12)

Similarly, relating ~F ·d~r and ~F ·d~A yields a relationship between 1-forms and 2-forms, which
we write as

∗(~F · d~r) = ~F · d~A (13)

In three (Euclidean) dimensions, we also write ∗ for the inverse maps, so that

∗(f dV ) = f (14)

and
∗(~F · d~A) = ~F · d~r (15)

We can work out the action of the Hodge dual map ∗ on a basis at each rank. The
standard basis of 1-forms in R

3 is the set {dx, dy, dz}; any 1-form can be expressed as a
linear combination of these basis 1-forms, with coefficients that are functions. Similarly, the
standard basis of 2-forms is {dy ∧ dz, dz ∧ dx, dx ∧ dy}, and the standard basis of 3-forms
is {dx ∧ dy ∧ dz}. Finally, the standard basis of 0-forms is just {1}, as any function is a
multiple of the constant function 1 (with a coefficient that is a function). The action of ∗ is
therefore given by

∗1 = dx ∧ dy ∧ dz (16)

∗dx = dy ∧ dz (17)

∗dy = dz ∧ dx (18)

∗dz = dx ∧ dy (19)
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∗(dy ∧ dz) = dx (20)

∗(dz ∧ dx) = dy (21)

∗(dx ∧ dy) = dz (22)

∗(dx ∧ dy ∧ dz) = 1 (23)

along with the linearity property

∗(f α + β) = f ∗α + ∗β (24)

for any function f and any p-forms α, β.

2.4 Derivatives

How do we differentiate differential forms?
It’s pretty clear how to differentiate 0-forms (functions): Take the gradient. The 1-form

associated with ~∇f is given by the Master Formula (1).
Our remaining vector derivative operators are the curl, which takes vector fields to vector

fields, and the divergence, which takes vector fields to scalar fields. Since adding a “d” takes
a p-form to a (p + 1)-form, it is natural to define differentiation of 1- and 2-forms by

d
(

~F · d~r
)

=
(

~∇× ~F
)

· d~A (25)

d
(

~F · d~A
)

=
(

~∇ · ~F
)

dV (26)

Using the relationship between vector fields ~G and 1-forms ~G · d~r, we see that ∗dF is the
1-form associated with ~∇× ~F , and ∗d∗F is the 0-form ~∇ · ~F . We can regard these relations
as the definitions of the curl and divergence of a 1-form

∗dF = curl(F ) (27)

∗d∗F = div(F ) (28)

and of course we have
df = grad(f) (29)

for 0-forms. 3

3In casual usage, one often refers to 1-forms as “vectors”, leading one to interpret F and df (and curl(F ))

as “vectors” when they are really 1-forms. More precisely, if F = ~F · d~r, then we have

curl(F ) =
(

~∇× ~F
)

· d~r (30)

div(F ) = ~∇ · ~F (31)

grad(f) = ~∇f · d~r (32)
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Why have we rewritten vector calculus in this new language? Because it unifies the
results. By convention, d acting on a 3-form is zero; the result should be a 4-form, but there
are no (nonzero) 4-forms in three dimensions. We therefore have the remarkable identity

d2 = 0 (33)

when acting on p-forms for any p. Furthermore, all of the integral theorems of vector calculus
can be combined into the single statement

∫

D

dα =

∫

∂D

α (34)

where D is a p-dimensional region in R
3, α is a (p− 1)-form, and ∂D denotes the boundary

of D.

3 Differential Forms

In general, d~r must be determined from the geometry, or given explicitly. We emphasize that
we do not assume that the dot product is positive definite; there may be nonzero vectors
such that ~v · ~v ≤ 0. A vector will be considered to be normalized if

|~v · ~v| = 1 (35)

We can nonetheless regard (1) as the definition of the gradient, and (3) as the definition
of 1-forms. Wedge products carry through as before. An important property of the wedge
product is that

β ∧ α = (−1)pqα ∧ β (36)

where α ∈
∧p and β ∈

∧q.
In order to generalize the notion of duality, we must specify one further piece of infor-

mation, the orientation ω, also called the volume element, that gives us the natural basis
for n-forms, that is, which sets the scale and orientation for (n-dimensional) volume. For
example, in R

3, we have
ω = dx ∧ dy ∧ dz (37)

This construction works in general: If {σi} is an orthonormal basis of
∧1, then we assume

ω = σ1 ∧ ... ∧ σn (38)

unless explicitly stated otherwise.
The Hodge dual operation can now be defined implicitly by

α ∧ ∗β = g(α, β) ω (39)

where α, β ∈
∧p, and where g is extended to higher-rank forms by

g(α1 ∧ ... ∧ αp, β1 ∧ ... ∧ βp) =
∣

∣g(αi, βj)
∣

∣ (40)
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where the last expression denotes the determinant of the matrix whose generic element is
given, and where αi, βj ∈

∧1.
In practice, it is much easier to apply (39) to an orthonormal basis element, since

∗(σ1 ∧ ... ∧ σp) = g(σ1, σ1)...g(σp, σp) σp+1 ∧ ... ∧ σn (41)

and each of the factors g(σi, σi) is ±1. However, be careful when using (41): It only holds
in an orthonormal basis, and you must still consider permutation factors when computing,
say, ∗(σ2 ∧ σ5).

Some simple consequences of these formulas are:

∗1 = ω (42)

∗∗ = (−1)p(n−p)+s (43)

where s is the signature of the inner product g, namely the number of (orthonormal) basis
elements whose squared magnitude is −1.

What about differentiation? Again, differentiating 0-forms is easy; just take f to df . We
generalize this operation to p-forms by defining

d(f dx1 ∧ ... ∧ dxp) = df ∧ dx1 ∧ ... ∧ dxp (44)

and extending by linearity. It is important to realize that the expressions in the wedge
product are coordinate 1-forms, and typically not elements of the orthonormal basis.

Important properties of this process of exterior differentiation that follow from this def-
inition are

d2 = 0 (45)

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ (46)

where α ∈
∧p.

4 Connections

Suppose we are given the infinitesimal displacement in the form

d~r = σiêi (47)

where {êi} is an orthonormal vector basis and the σi are 1-forms; d~r is thus a vector-valued 1-

form, and, via (3), provides a map from vector to 1-forms. We think of v and ~v as physically
equivalent, so we impose the condition

|v| = |~v| (48)

which leads by polarization to the inner product on 1-forms given by (5). Not surprisingly,
{σi} is an orthonormal 1-form basis under this inner product. Furthermore, the inverse
isomorphism from 1-forms to vectors is given by

~v = g(v, d~r) (49)
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Finally, we note that {σi} is just the dual basis to {êi}, under the action

v(~w) := ~v · ~w (50)

with v and ~v related as above.
We wish to extend the exterior derivative operator on differential forms to (ordinary)

vectors. We define
ωij := êi · dêj (51)

and the goal is now to determine the 1-forms ωij. We first impose the condition that d be
metric compatible, that is, that

d(~v · ~w) = d~v · ~w + ~v · d~w (52)

from which it follows immediately that

0 = d(êi · êj) = dêi · êj + dêj · êi (53)

or in other words
ωji + ωij = 0 (54)

We also require that d be torsion free, which means by definition that 4

d(d~r) = 0 (55)

Working out this condition, we have 5

d(d~r) = dσiêi − σi ∧ dêi = dσiêi − σk ∧ dêk (56)

so that
d(d~r) · êj = dσiêi · êj − σk ∧ ωjk (57)

Noting that gij = êi · êj is constant (and in fact 0 or ±1), we define the connection 1-forms

ωi
j by requiring

ωjk = gji ω
i
k (58)

and the torsion-free condition becomes the (first) Cartan structure equation

dσi + ωi
k ∧ σk = 0 (59)

It turns out that there is a unique torsion-free, metric-compatible connection, which is
known as the Levi-Civita connection. In other words, the connection 1-forms ωi

j are uniquely
determined by (54) and (59). Although a formula can be given for the connection, the most
efficient way to determine the connection is usually to guess a solution of these equations.
If it works, you’re done!

4This condition does not automatically follow from the requirement that d2 = 0 on differential forms,
since it is not obvious that d~r is d of anything; the position vector ~r may not be in our vector space.

5We adopt the Einstein summation convention; repeated indices are summed over.
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5 Curvature

The curvature 2-forms Ωi
j are defined by the (second) Cartan structure equation

Ωi
j = dωi

j + ωi
m ∧ ωm

j (60)

Expanding with respect to our basis, we can write

ωk
i = Γk

ij σj (61)

Ωi
j =

1

2
Ri

jkl σ
k ∧ σl (62)

which defines the quantities on the right-hand-side. The latter expression corresponds to a
tensor called the Riemann curvature tensor, whose components are Ri

jkl. The “connection
components” Γk

ij are called Christoffel symbols, and are not the components of a tensor.
(In particular, they can all vanish in one basis but not in another, which is not possible for
tensor components.)

Two contractions of the Riemann tensor are important in relativity. These are the Ricci

tensor, whose components are defined by Rij = Rm
imj, and the Ricci scalar, which is the

“trace” of the Ricci tensor, defined by R = gijRij, where gij denotes the (components of
the) inverse of the metric tensor, whose components are gij.
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