MTH 679

HW #6

Recall from the previous assignment that the condition

$$2\frac{v \cdot w}{v \cdot v} \in \mathbb{Z} \tag{(*)}$$

for all vectors in some subset of \mathbb{R}^n tightly constrains both the angles between those vectors and their relative lengths. All vectors throughout this assignment are assumed to lie in a subset $S \subset \mathbb{R}^n$ that satisfies the above constraint.

- 1. (a) Choose two vectors $v, w \in \mathbb{R}^2$ satisfying (*) and such that the angle between them is $\frac{3\pi}{4}$.
 - (b) Embedding \mathbb{R}^2 in \mathbb{R}^3 , it is straightforward to choose $u \perp \mathbb{R}^2$ and to show that $S = \{u, v, w\} \subset \mathbb{R}^3$ satisfies (*). Find some *other*, linearly independent u, not perpendicular to both v and w, such that (*) still holds.
 - (c) Is there more than one way to do this?
 - (d) What are the angles between each pair of vectors in S? What are the ratios of their magnitudes?
 - (e) Do your solution(s) satisfy the additional condition that

$$v \cdot w \le 0 \tag{**}$$

for all elements $v, w \in S$?

- 2. **BONUS:** Can you extend your solution to \mathbb{R}^4 ? What are the resulting angles and ratios? Is there more than one way to do this (starting from the same set in \mathbb{R}^3)? Your four vectors should be linearly independent, and none should be orthogonal to all three of the others.
- 3. **CHALLENGE:** Now suppose that the angle between $v, w \in \mathbb{R}^2$ is $\frac{5\pi}{6}$, and repeat Question 1a. Then attempt to repeat Question 1b. **Do not spend too much time on this problem without consulting me!**