Recall from the previous assignment that the condition

$$
\begin{equation*}
2 \frac{v \cdot w}{v \cdot v} \in \mathbb{Z} \tag{}
\end{equation*}
$$

for all vectors in some subset of \mathbb{R}^{n} tightly constrains both the angles between those vectors and their relative lengths. All vectors throughout this assignment are assumed to lie in a subset $S \subset \mathbb{R}^{n}$ that satisfies the above constraint.

1. (a) Choose two vectors $v, w \in \mathbb{R}^{2}$ satisfying $\left(^{*}\right)$ and such that the angle between them is $\frac{3 \pi}{4}$.
(b) Embedding \mathbb{R}^{2} in \mathbb{R}^{3}, it is straightforward to choose $u \perp \mathbb{R}^{2}$ and to show that $S=\{u, v, w\} \subset \mathbb{R}^{3}$ satisfies $\left(^{*}\right)$. Find some other, linearly independent u, not perpendicular to both v and w, such that $(*)$ still holds.
(c) Is there more than one way to do this?
(d) What are the angles between each pair of vectors in S ? What are the ratios of their magnitudes?
(e) Do your solution(s) satisfy the additional condition that

$$
\begin{equation*}
v \cdot w \leq 0 \tag{**}
\end{equation*}
$$

for all elements $v, w \in S$?
2. BONUS: Can you extend your solution to \mathbb{R}^{4} ? What are the resulting angles and ratios? Is there more than one way to do this (starting from the same set in \mathbb{R}^{3})? Your four vectors should be linearly independent, and none should be orthogonal to all three of the others.
3. $\boldsymbol{C H A L L E N G E}$: Now suppose that the angle between $v, w \in \mathbb{R}^{2}$ is $\frac{5 \pi}{6}$, and repeat Question 1a. Then attempt to repeat Question 1b.
Do not spend too much time on this problem without consulting me!

