- 1. In this problem, you will determine the Lie algebra $\mathfrak{sl}(2,\mathbb{C})$ of the Lie group $SL(2,\mathbb{C})$ of invertible 2×2 matrices.
 - (a) Suppose that $\gamma(\alpha)$ gives a (smooth) curve in SL(2, \mathbb{C}) passing through the identity at $\alpha = 0$, with

$$\gamma(\alpha) = \begin{pmatrix} a(\alpha) & b(\alpha) \\ c(\alpha) & d(\alpha) \end{pmatrix}.$$

What are the values of a(0), b(0), c(0), and d(0)?

- (b) Use the fact that $|\gamma(\alpha)| = \det(\gamma(\alpha)) = 1$ to determine a condition on the components, a'(0), b'(0), c'(0), and d'(0). What does this tell you about the form of a "typical" element $\gamma'(0)$ of $\mathfrak{sl}(2,\mathbb{C})$?
- (c) Your condition should tell you that a'(0) + d'(0) = 0, so $\mathfrak{sl}(2,\mathbb{C})$ is a subset of

$$W = \left\{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} : a, b, c \in \mathbb{C} \right\}.$$

Verify that W is a vector space by checking that W contains the zero matrix and is closed under addition and scalar multiplication.

- (d) Find a basis for W, and show that each of your basis vectors is actually in sl(2, C).
 (To show a specific vector is in the Lie algebra of some Lie group G, you must find a (smooth) curve γ(α) in G such that γ(0) is the identity and γ'(0) equals the given vector.)
- (e) Argue that $\mathfrak{sl}(2,\mathbb{C}) = W$.