1. In this problem, you will determine the Lie algebra $\mathfrak{s l}(2, \mathbb{C})$ of the Lie group $\mathrm{SL}(2, \mathbb{C})$ of invertible 2×2 matrices.
(a) Suppose that $\gamma(\alpha)$ gives a (smooth) curve in $\operatorname{SL}(2, \mathbb{C})$ passing through the identity at $\alpha=0$, with

$$
\gamma(\alpha)=\left(\begin{array}{ll}
a(\alpha) & b(\alpha) \\
c(\alpha) & d(\alpha)
\end{array}\right)
$$

What are the values of $a(0), b(0), c(0)$, and $d(0)$?
(b) Use the fact that $|\gamma(\alpha)|=\operatorname{det}(\gamma(\alpha))=1$ to determine a condition on the components, $a^{\prime}(0), b^{\prime}(0), c^{\prime}(0)$, and $d^{\prime}(0)$. What does this tell you about the form of a "typical" element $\gamma^{\prime}(0)$ of $\mathfrak{s l}(2, \mathbb{C})$?
(c) Your condition should tell you that $a^{\prime}(0)+d^{\prime}(0)=0$, so $\mathfrak{s l}(2, \mathbb{C})$ is a subset of

$$
W=\left\{\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right): a, b, c \in \mathbb{C}\right\} .
$$

Verify that W is a vector space by checking that W contains the zero matrix and is closed under addition and scalar multiplication.
(d) Find a basis for W, and show that each of your basis vectors is actually in $\mathfrak{s l}(2, \mathbb{C})$. (To show a specific vector is in the Lie algebra of some Lie group G, you must find a (smooth) curve $\gamma(\alpha)$ in G such that $\gamma(0)$ is the identity and $\gamma^{\prime}(0)$ equals the given vector.)
(e) Argue that $\mathfrak{s l}(2, \mathbb{C})=W$.

