1. Suppose G is an $n \times n$ matrix. Define a "dot product" on \mathbb{R}^{n} by

$$
\boldsymbol{v} \cdot \boldsymbol{w}=\boldsymbol{v}^{T} G \boldsymbol{w}
$$

(a) What conditions on G guarantee that this dot product is a symmetric, nondegenerate bilinear form on \mathbb{R}^{n} ?
(b) Are your conditions necessary as well as sufficient?
(c) Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation with matrix M. What condition on M is equivalent to $T(\boldsymbol{v}) \cdot T(\boldsymbol{w})=\boldsymbol{v} \cdot \boldsymbol{w}$ for all $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^{n} ?$
2. Suppose G is an $n \times n$ matrix. Define a "dot product" on \mathbb{R}^{n} by

$$
\boldsymbol{v} \cdot \boldsymbol{w}=\boldsymbol{v}^{T} G \boldsymbol{w}
$$

(a) What conditions on G guarantee that this dot product is an anti-symmetric, nondegenerate bilinear form on \mathbb{R}^{n} ?
(b) Are your conditions necessary as well as sufficient?
(c) Show that the conditions in (a) imply that n is even.
3. (a) Compute $c^{\prime}(0)$ if

$$
c(\beta)=\left(\begin{array}{cc}
\cosh \beta & \sinh \beta \\
\sinh \beta & \cosh \beta
\end{array}\right)
$$

(b) Compute $\gamma^{\prime}(0)$ if

$$
\gamma(\alpha)=\left(\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(c) Compute $\sigma^{\prime}(0)$ if $\sigma(\alpha)=\gamma(\alpha)^{2}$ and compare your result with $\gamma^{\prime}(0)$.

