
14 Conformalization

Conformal Groups

Consider the vector
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(291)

and assume the norm is given by

|V |2 = −T 2 +X2 + Y 2 + Z2 + P 2 −Q2 (292)

so that V ∈ R
6 with signature (4, 2). Assume further that V is null, that is, that |V | = 0,

and set
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 . (293)

How does SO(4, 2) act on v?
The subgroup SO(3, 1) ⊂ SO(4, 2) acts as usual on T , X, Y , Z, but leaves P and Q

invariant; thus, SO(3, 1) also acts as usual on v. The boost in the (P,Q)-plane takes P +Q

to
(P coshα +Q sinhα) + (Q coshα + P sinhα) = (P +Q) eα (294)

and thus takes v to a multiple of itself; this transformation is called a dilation. But what
about the remaining 8 elements of SO(4, 2), which mix up (T,X, Y, Z) with (P,Q)?

Consider for example the rotation RX in the (X,P )-plane, and the boost BX in the
(X,Q)-plane. We have

RX : (X,P ) 7−→ (X cosα + P sinα, P cosα−X sinα), (295)

BX : (X,Q) 7−→ (X coshα +Q sinhα,Q coshα−X sinhα) (296)

from which the corresponding Lie algebra elements rX , bX are easily seen to be

rx : (X,P,Q) 7−→ (P,−X, 0), (297)

bx : (X,P,Q) 7−→ (Q, 0, X), (298)

or in matrix form

rx =




0 1 0
−1 0 0
0 0 0


 , bx =



0 0 1
0 0 0
1 0 0


 . (299)
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If we do both transformations at once, we obtain the null rotations

rx ± bx =




0 1 1
−1 0 0
1 0 0


 (300)

which have the interesting property that their cube is zero. Thus, the corresponding group
element is easy to obtain using a power series; we have

exp
(
(rx ± bx)α

)
=




1 α ±α

−α 1− 1
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 (301)

or equivalently

X 7−→ X + (P ±Q)α, (302)

P 7−→ P −X α−
1

2
(P ±Q)α2, (303)

Q 7−→ Q±X α±
1

2
(P ±Q)α2, (304)

which can be combined to yield

P ±Q 7−→ P ±Q, (305)

P ∓Q 7−→ P ∓Q− 2X α− (P ±Q)α2. (306)

These null rotations thus leave one of the null directions P ±Q invariant; hence the name.
So what does the null rotation generated by rx + bx do to v? We have

x =
X

P +Q
7−→

X + (P +Q)α

P +Q
= x+ α, (307)

with y, z, t held fixed; this is a translation in the x-direction. Translations in the y, z, and
t directions can be constructed similarly.

What about rx − bx? Now we have

x =
X

P +Q
7−→

X + (P −Q)α

P +Q− 2X α− (P −Q)α2
=

x+ s α

1− 2xα− s α2
(308)

where

s =
P −Q

P +Q
=

P 2 −Q2

(P +Q)2
. (309)

Since we are assuming |V | = 0, we can replace P 2 −Q2 by T 2 −X2 − Y 2 − Z2, so that

s = −|v|2 (310)
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and therefore

x 7−→
x− |v|2 α

1− 2xα + |v|2 α2
. (311)

A conformal translation of v along a is defined by

v 7−→
(
v−1 + a

)−1
=

v + a|v|2

1 + 2〈v, a〉+ |a|2|v|2
(312)

where
v−1 =

v

|v|2
(313)

for |v| 6= 0. 1

Comparing (312) with (311) shows that the latter is just the conformal translation of v
in the (negative) x-direction. Conformal translations in the y, z, and t directions can be
constructed similarly.

In summary, there is a nonlinear action of SO(4, 2) on vectors v in 3 + 1-dimensional
Minkowski space, which is associated with transformations that preserve the inner product
up to scale. Such transformations are known as conformal transformations, and SO(4, 2) is
referred to as the conformal group of 3 + 1-dimensional Minkowski space. More generally,
we refer to SO(4, 2) as the conformalization of SO(3, 1); the same construction can be ap-
plied to any orthogonal group. Conformalization adds two new degrees of freedom to the
representation, thus adding an internal symmetry SO(1, 1) (the dilation), together with one
translation and one conformal translation (the two sets of null rotations) for each existing
degree of freedom.

E7 as the Conformal Group of E6

Recall that the minimal representation of e6 is the Albert algebra H3(O), and that

|e6| = 78, |H3(O)| = 27. (314)

Thus, whereas so(3, 1) acts on a 4-dimensional vector space, e6 acts on a 27-dimensional
space. Applying the same “conformalization” construction as above, we expect to obtain a
new so(1, 1) symmetry, together with 27 translations and 27 conformal translations. Sure
enough,

78 + 27 + 27 + 1 = 133 = |e7|, (315)

and this construction does indeed turn out to generate e7 from e6. This Lie algebra decom-
position of e7 is represented symbolically by writing

e7(−25) = e6(−26) + 2× 27 + so(1, 1), (316)

1Although inversion is not defined for |v| = 0, conformal translation (312) is still well-defined for null
vectors (and the zero vector). Conformal translations take null vectors to multiples of themselves, and
preserve the (spatial) angles between them.
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Figure 1: The block structure of a 4 × 4 antisymmetric matrix in terms of 2 × 2 blocks is
shown on the left; the block structure of a 6×6×6 antisymmetric tensor in terms of 3×3×3
blocks is shown on the right. Blocks with similar shading contain equivalent information.

where we have identified the real forms in our construction as belonging to the half-split
magic square.

However, there is an important difference between “conformalization” as applied to the
2 × 2 and 3 × 3 magic squares, which we here merely summarize. One way to see this
difference is to rewrite the construction explicitly in terms of two division algebras, noting
that conformalization corresponds in both cases to the transition from the second row to
the third. It is however more common to use larger matrices rather than explicit split
quaternions. In the 2× 2 case, we can combine a vector X and our new degrees of freedom
(p, q) into a 4× 4 matrix of the form

P =

(
p+ q X

−X̃ p− q

)
, (317)

where X̃ = X−trX as usual denotes trace reversal. There is a duality operation that allows
P to be rewritten as a completely antisymmetric matrix. The elements of the conformalized
algebra (e.g. so(4, 2)) can also be expressed as 4× 4 matrices, of the general form

M =

(
Φ− 1

2
ρ A

B −Φ† + 1
2
ρ

)
, (318)

where Φ is in the original algebra (e.g. so(3, 1)), so that tr (Φ) = 0, ρ ∈ R is the dilation, and
the Hermitian matrices A and B are the translations and conformal translations, respectively.
Although (318) generalizes directly to the 3×3 case, with φ ∈ e6, ρ ∈ R, and A,B ∈ H3(O),
(317) does not.

The issue is that, in the 2×2 magic square, P is (reinterpreted as) a completely antisym-
metric matrix, a rank 2 tensor. In the 3×3 magic square, we must replace P by a completely
antisymmetric rank 3 tensor. We can think of this process as replacing a square by a cube,
as shown in Figure 1. The square corresponds to P, with two real degrees of freedom on the
diagonal (p±q), and one vector degree of freedom on the off diagonal (X). In a cube, we still
have two real degrees of freedom on the main diagonal, but there are now two independent
sets of vectors, in three copies each, filling out the cube. This geometric description correctly
explains the fact that the minimal representation of e7 is given by a pair of real numbers
p± q, together with two elements X ,Y ∈ H3(O). The collection (p+ q, p− q,X ,Y) is called
a Freudenthal triple system, and has dimension 1 + 1 + 27 + 27 = 56 as a vector space.
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