
11 Properties of Roots

In this section, we fill in the missing details when deriving the properties of the roots of a
simple Lie algebra g.

We assume that a Cartan algebra h ⊂ g of simultaneously diagonalizable elements has
been chosen, and that g has been decomposed into eigenspaces

g = h ⊕
α∈R

gα,

so that, for any H ∈ h, we have
[H,Xα] = α(H)Xα (194)

for a finite set of roots R ⊂ h∗. Since g is simple, the Killing form B on g is nondegenerate.
As argued in the previous section,

B(gα, gβ) = 0 = B(gα, h) (195)

for α+β 6= 0 (and α 6= 0, since 0 6∈ R). Recall further that the Jordan–Chevalley decomposi-
tion shows that any linear operator can be divided uniquely into the sum of a diagonalizable
operator and a nilpotent operator. Thus, nonzero elements of h can not be nilpotent.

We begin with a simple lemma about traces. Since

tr (XY ) = tr (Y X), (196)

the trace is cyclic, so that, for instance,

tr (XY Z) = tr (ZXY ). (197)

Thus,
tr ([X, Y ]Z) = tr (XY Z − Y XZ) = tr (XY Z −XZY ) = tr (X[Y, Z]) (198)

which implies that
B([X, Y ]Z) = B(X[Y, Z]). (199)

Preferred Cartan Elements

Since B is nondegenerate, for any Xα ∈ gα, there must be some Yα ∈ g such that

B(Xα, Yα) 6= 0, (200)

and (195) now implies that Yα ∈ g−α. Thus, if α is a root, so is −α, and we have

[H, Yα] = −α(H)Yα. (201)

Furthermore, since α 6= 0, there must be some H ∈ h such that, using (199,

B([Xα, Yα], H) = B(Xα, [Yα, H]) = B(Xα, α(H)Y ) = α(H)B(Xα, Yα) 6= 0 (202)
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so that
2Hα = [Xα, Yα] 6= 0. (203)

We now claim that α(Hα) 6= 0. If not, then

[Hα, Xα] = 0 = [Hα, Yα]. (204)

Consider now any representation of h, and suppose that the image of Hα, which we will also
call Hα, has an eigenspace

V = {v : Hαv = λv} (205)

for some fixed eigenvalue λ. Since Xα and Yα commute with Hα, they both take eigenvectors
to eigenvectors, that is, they take V to itself. So V itself is a representation of the subalgebra
generated by {Hα, Xα, Yα}. But this means that, as matrices acting on V , we must have

[Xα, Yα] = 2Hα = 2λ (206)

since representations preserve commutators (by definition), and Hα is a multiple of the
identity matrix when acting on V . Taking the trace of both sides immediately forces λ = 0.
Thus, the only eigenvalue of Hα is 0, which means that Hα is nilpotent. But the only
nilpotent element of h is 0, and Hα 6= 0. This contradiction establishes the claim.

We can now rescale Xα and Yα if necessary to obtain

α(Hα) = 1.

Although this construction does not determine Xα and Yα uniquely, Hα is uniquely deter-
mined. These special elements of h will be referred to as preferred Cartan elements.

Root Angles

As discussed in the previous section, {Hα, Xα, Yα} form a standard basis for sl(2,R), the
split real form of su(2). Thus, all representations of this Lie subalgebra of g have half-integer
eigenvalues, and in particular, β(Hα) ∈

1

2
Z for all roots β. The restriction of g to real linear

combinations of Hα, Xα, Yα for all α ∈ R is therefore a real subalgebra of g, and is in fact
the split real form of g.

As before, choose Tα ∈ h to be the element determined by

α(H) = B(Tα, H) (207)

for all H ∈ h. We need to verify that Tα is a multiple of Hα.
Using (202) and (203, we have

B(2Hα, H) = α(H)B(Xα, Yα) (208)

so that in particular

B(2Hα, Hα) = α(Hα)B(Xα, Yα) = B(Xα, Yα) (209)
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which is furthermore nonzero by assumption. Thus,

B(Hα, H) = B(Tα, H)B(Hα, Hα) = B
(

B(Hα, Hα)Tα, H
)

(210)

for all H ∈ h, and we conclude that

Tα =
Hα

B(Hα, Hα)
.

as claimed previously. It now follows immediately that

α(Hβ) = B(Tα, Hβ) =
B(Hα, Hβ)

B(Hα, Hα)
∈

1

2
Z

leading to the angles and ratios discussed in the previous section.

Multiples of Roots, and Multiplicity

It remains to show that the only multiples of a root α that are roots are ±α, and that each
root only occurs once, that is, that |gα| = 1.

We have shown that {Hα, Xα, Yα} is a standard basis for sl(2,R), so that Xα, Yα act as
raising and lowering operators, respectively, for Hα. Suppose that Z ∈ gα, so that

[Hα, Z] = α(Hα)Z = Z. (211)

We know that all representations of sl(2,R) consist of integer or half-integer “ladders”. So
how does sl(2,R) act on Z? Moving down the ladder,

Z0 = [Yα, Z] (212)

is an element of h, since Yα decreases all the eigenvalues of Z by α, that is

[H,Z0] =
[

H, [Yα, Z]
]

=
[

[H, Yα], Z
]

+ =
[

Yα, [H,Z]
]

= (−α + α)[Yα, Z] = 0 (213)

for any H ∈ h. Since B is positive-definite on h, we can expand Z0 as

Z0 = zHα +H⊥ (214)

where
B(Hα, H⊥) = 0. (215)

But
B(Hα, H⊥) = 0 =⇒ B(Tα, H⊥) = 0 =⇒ α(H⊥) = 0 (216)

so that
α(Z0) = zα(Hα) + 0 = z. (217)
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Putting this all together, we have

[Xα, Z0] = −[Z0, Xα] = −α(Z0)Xα = −zXα. (218)

But moving back up the ladder has to yield a multiple of Z, and we conclude that Z is itself
a multiple of Xα, thus confirming that |gα| = 1.

The argument against any other multiples of α other than ±α being roots is similar. If
cα is a root, then choosing Z ∈ gcα leads to

[Hα, Z] = (cα)(Hα)Z = cZ (219)

which forces c to be half-integer. Suppose c ∈ Z. Then we can move up or down the ladder
from Z to some element Z1 ∈ gα. By the argument above, Z1 must be a multiple of Xα.
But then the ladder collapses, and c = ±1. In particular, 2α can not be a root. But now 1

2
α

also can not be a root, which rules out half-integer values of c.
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12 Dynkin Diagrams

We have seen that any simple Lie algebra can be decomposed into a Cartan subalgebra h and
its eigenspaces gα. Furthermore, the commutators of elements in g±α determine a collection
of preferred elements Hα ∈ h, and the angles between the Hα are tightly constrained. We
show in this section that these constraints in turn impose additional constraints on the
possible types of simple Lie algebras.

The roots α ∈ h∗ share the same angles as the corresponding Hα. We first reduce the
number of roots to an independent set, {αi}. Any other root can, of course be expressed as
a linear combination of our chosen basis. The symmetry of the roots allows us to choose the
basis so that the nonzero coefficients are always either strictly positive or strictly negative;
the two types of roots are then called positive and negative roots, respectively, and the basis
elements are called simple roots. For each root α, one of ±α is positive. The positive roots
have the property that they are all sums, not differences, of the simple roots; in fact, the
coefficients turn out to be positive integers. It is not hard to see that the positivity property
means that the angle between any two simple roots must be obtuse, rather than acute.

Recall that all pairs of roots satisfy

α · β

α · α
∈

1

2
Z

so that the angle θ between the roots must satisfy

4 cos2 θ ∈ {0, 1, 2, 3, 4}.

Since the simple roots αi ∈ R
n are independent, they satisfy

0 >
αi · αj

αi · αj

∈
1

2
Z (220)

and the angles θij between roots must satisfy

4 cos2 θij = 0, 1, 2, 3. (221)

A Coxeter graph is a graph with one dot representing each simple root, and with each pair
of dots connected by 4 cos2 θij lines. Equation (220) also constrains the relative magnitudes
of (non-orthogonal)roots; a Dynkin diagram is a Coxeter graph with the addition of arrows
on the double and triple connections pointing from the longer root to the shorter.

We now derive several restrictions on the possible Dynkin diagrams. To do so, the only
assumptions we need are that the αi ∈ R

n satisfy the conditions above. Most of these
conditions apply both to Coxeter graphs and Dynkin diagrams.

There are at most k − 1 connections between k simple roots.

For the purpose of this assertion, a connection refers to a pair of roots with at least one
line connecting them; multiple lines between a given pair of roots still count as a single
connection.
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We let

α =
k

∑

1

αi

|αi|
6= 0. (222)

where the inequality follows from the independence of the simple roots. The magnitude of
α is given by

0 < α · α =
∑

i,j

αi · αj

|αi||αj|

= k + 2
∑

i<j

αi · αj

|αi||αj|

= k +
∑

i<j

2 cos θij. (223)

But either αi · αj = 0, in which case there are no connections, or

4 cos2 θij ∈ {1, 2, 3}, (224)

in which case
2 cos θij ≤ −1. (225)

Thus,
0 < k −# of connections (226)

which is what we were trying to show.
An immediate corollary is that there are no closed loops in a Coxeter graph.

There are at most 3 lines at each point.

Suppose that a simple root α is connected to k other simple roots αi. Since there are no
cycles, none of the αi can be connected to each other. Thus,

i 6= j =⇒ αi · αj = 0. (227)

Since the simple roots are independent, we can extend {αi} to an orthogonal basis {α0, αi}
of the span 〈α, αi〉. We can expand α in this basis, yielding

α =
k

∑

0

α · αi

αi · αi

αi. (228)

Since α is independent of the αi, we must have

α · α0 6= 0 (229)

so that

|α|2 =
k

∑

0

(α · αi)
2

αi · αi

>

k
∑

1

(α · αi)
2

|αi|2
. (230)
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Thus,

# of lines = 4
k

∑

1

cos2 θi = 4
k

∑

1

(α · αi)
2

|α|2|αi|2
< 4 (231)

so that the number of lines is strictly less than 4, as claimed.

Simple chains of roots can be replaced by a single root.

Suppose that there is a chain of single lines connecting αi to αi+1 for 1 ≤ i ≤ k− 1, in which
case

αi · αi+1

αi · αi

= −
1

2
, (232)

α1 · α1 = ... = αk · αk = Q2. (233)

We claim that the entire chain can be replaced by

α =
k

∑

1

αi (234)

with the result still being a valid Coxeter graph.
We first compute

α · α =
∑

i,j

αi · αj

=
∑

i

αi · αi + 2
∑

i<j

αi · αj

=
k

∑

1

αi · αi + 2
k−1
∑

1

αi · αi+1

= kQ2 − (k − 1)Q2 = Q2 (235)

so that α has the same magnitude as each of the αi. Furthermore, if β is any other root, β
can be connected to at most one of the αi, in which case

β · α = β · αi; (236)

if not, β · α = 0. In either case, all of the conditions on the original roots continue to hold if
the k roots αi are replaced by the single root α, as claimed.

Allowed Diagrams

We can use these three properties to rule out several Coxeter graphs. First of all, we consider
only connected graphs, as only such graphs correspond to simple Lie algebras. The simplest
graphs correspond to n roots, connected in a single chain by single lines. This diagram is
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of type A; since there are n roots, h is n-dimensional. The corresponding Lie algebras are
therefore called an. All of the roots have the same magnitude.

Consider instead a single chain, but with at least one double line. If there are more than
one, then collapsing the roots in between must yield an allowable graph. But such a graph
has four lines at a single point, which is not allowed. Thus, there is at most one double line,
and hence exactly one. In this case, the roots have one of two magnitudes, depending on
which side of the double connection they are on. Now suppose that there is a branch point
in the graph. Again, there can not be more than one, since otherwise the chain between
them could be collapsed, again resulting in a graph with four lines. Similarly, there can not
be both a branch point and a double line. We will discuss these cases in further detail below;
the corresponding Lie algebras are of types B–F .

Finally, if two roots are connected by three lines, then no other lines are possible. Thus,
there is only one Coxeter graph with three lines. This diagram is of type G; since there are
two roots, h is 2-dimensional. The corresponding Lie algebra is therefore called g2.

Diagrams with a double link.

Consider two simple chains, p roots αm on one side of a double link, and q roots βk on the
other, with the double link connecting αp and βq. Since all but one of the links are single
lines, we know that

αm · αm = P 2, βn · βn = Q2 (237)

and we can assume without loss of generality that there are p “short” roots and q “long
roots, so that Q2 = 2P 2. We also know that

αm · αm+1

αm · αm

= −
1

2
, (238)

with a similar relation for the roots βk. Setting

α =

p
∑

1

m
αm

|αm|
, β =

q
∑

1

k
βk
|βk|

, (239)

and using similar techniques as in the previous calculations, we can compute

α · α =

p
∑

1

m2 −

p−1
∑

1

m(m+ 1)

= p2 +

p−1
∑

1

(

m2 −m(m+ 1)
)

= p2 −

p−1
∑

1

m

= p2 −
p(p− 1)

2
=
p(p+ 1)

2
(240)
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and similarly

β · β =
q(q + 1)

2
. (241)

We also know that

4 cos2 θ = 4
(αp · βq)

2

P 2Q2
= 2 (242)

so that

(αp · βq)
2 =

(

pαp

P
·
qβq
Q

)2

= p2q2
(αp · βq)

2

P 2Q2
=

1

2
p2q2. (243)

But
(α · β)2 < (α · α)(β · β) (244)

or, in other words,

1

2
p2q2 <

1

4
p(p+ 1)q(q + 1) (245)

=⇒ 2pq < pq + p+ q + 1 (246)

=⇒ pq < p+ q + 1 (247)

=⇒ (p− 1)(q − 1) < 2. (248)

There are three ways to satisfy (248). If p = 1, then there is only one short root; these
Lie algebras are of type B, and denoted bp+1. If q = 1, then there is only one long root;
these Lie algebras are of type C, and denoted cq+1. Finally, if p = q = 2, we get a single,
exceptional case, of type F , and denoted f4.

Diagrams with a branch point.

Consider now three simple chains meeting at a branch point ψ, with p− 1 roots αm in one
chain, q− 1 roots βk in the second, and r− 1 roots γℓ in the third. Since all of the links are
single lines, we know that

αm · αm = βk · βk = γℓ · γℓ = ψ · ψ = Q2. (249)

As above, set

α =

p
∑

1

m
αm

|αm|
, β =

q
∑

1

k
βk
|βk|

, γ =
r

∑

1

ℓ
γℓ
|γℓ|

. (250)

The magnitudes of α, β, and γ can be computed as in the preceding case, taking into account
that the chains (excluding ψ) now contain p− 1, q− 1, and r− 1 roots, respectively, yielding

α · α =
p(p− 1)

2
, β · β =

q(q − 1)

2
, γ · γ =

r(r − 1)

2
. (251)
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The roots αm, βk, γℓ are mutually orthogonal; as before, we can complete this set of roots
to an orthogonal basis by adding ψ0, with ψ · ψ0 6= 0. Expanding ψ in terms of this basis,
we get

ψ =

p−1
∑

1

ψ · αm

αm · αm

αm +

q−1
∑

1

ψ · βk
βk · βk

βk +
r−1
∑

1

ψ · γℓ
γℓ · γℓ

γℓ +
ψ · ψ0

ψ0 · ψ0

ψ0 (252)

and therefore

ψ · ψ >

p−1
∑

1

(ψ · αm)
2

Q2
αm +

q−1
∑

1

(ψ · βk)
2

Q2
βk +

r−1
∑

1

(ψ · γℓ)
2

Q2
γℓ. (253)

In other words, if θα is the angle between the vectors ψ and α, etc., then

cos2 θα + cos2 θβ + cos2 θγ < 1. (254)

But

(α · ψ)2 =
(p− 1)2(αp−1 · ψ)

Q2
= (p− 1)2(ψ · ψ) cos2 θp−1 =

1

4
(p− 1)2|ψ|2. (255)

Thus,
(α · ψ)2

|α|2|ψ|2
=

(p− 1)2/4

p(p− 1)/2
=
p− 1

2p
=

1

2
(1−

1

p
) (256)

and similarly for β and γ, which, using (254), yields

3

2
−

1

2

(

1

p
+

1

q
+

1

r

)

< 1 (257)

or in other words
1

p
+

1

q
+

1

r
> 1. (258)

There are several ways to satisfy (258). If q = r = 2, we get the diagrams of type D, and
the Lie algebras denoted dp+2. The only other distinct possibilities are r = 2, q = 3, and
p ∈ {3, 4, 5}. These three exceptional cases belong to class E, and are denoted e6, e7, and e8.

Special Cases

The four infinite families correspond to known symmetry groups. In terms of their Lie
algebras, we have

an = su(n+ 1) = su(n+ 1,C), (259)

bn = so(2n+ 1) = su(n+ 1,R), (260)

cn = sp(2n) = su(n,H), (261)

dn = so(2n) = su(2n,R). (262)
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There are similar correspondences for four of the five exceptional cases, namely

f4 = su(3,O), (263)

e6 = sl(3,O) = su(3,C⊗O), (264)

e7 = sp(6,O) = su(3,H⊗O), (265)

e8 = su(3,O⊗O), (266)

but the last case is somewhat different, namely

g2 = Der(O), (267)

which at the group level says that
G2 = Aut(O), (268)

that is, G2 is the group of automorphisms of the octonions. We will discuss all of these
correspondences further below.

The allowable Dynkin diagrams can easily be found online. Writing out the first few
cases, there are several that overlap. For instance,

su(2) ∼= a1 ∼= b1 ∼= so(3), (269)

so(5) ∼= b2 ∼= c2 ∼= su(2,H). (270)

Somewhat more unexpectedly, we have

su(4) ∼= a3 ∼= d3 ∼= so(6), (271)

as well as
so(4) ∼= d2 ∼= a1 ⊕ a1 ∼= so(3)⊕ so(3) (272)

showing explicitly that d2, whose Dynkin diagram consists of two disconnected points, is not
simple. To avoid these repetitions, one normally assumes that n > 1 for bn, that n > 2 for
cn, and that n > 3 for dn.

Finally, the Lie algebras en correspond to the the cases described above by the parameter
values (p, q, r) = (n − 3, 3, 2) with n = 6, 7, 8. We could in principle consider the cases
n = 4, 5 as (also) being of type E. We would then have the duplications

e5 ∼= d5 ∼= so(10), (273)

e4 ∼= a4 ∼= su(5), (274)

so this normally not done. However, it is worth pointing out that the nested sequence of Lie
algebras

so(10) ⊂ su(5) ⊂ e6 ⊂ e7 ⊂ e8 (275)

has a long history in physics, with each of the corresponding Lie groups being considered as
candidates for the symmetry group of a so-called Grand Unified Theory, combining three of
the four fundamental forces of nature, namely electromagnetism and the strong and weak
nuclear forces.
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