
10 Roots

All simple Lie algebras have the same basic pieces that we have just constructed for su(2)
and su(3). But what are those pieces?

We work throughout in the adjoint representation. The classification of simple Lie al-
gebras normally uses the complex form of the Lie algebra, but can also be done using the
split real form, which, as we will see, is in fact constructed along the way. Most of our
presentation is valid in either setting, although we use the standard (complex or compact)
names throughout, for instance “su(3)” even when working with the split real form sl(3,R).

Cartan subalgebra

First of all, there is a maximal subalgebra generated by non-null commuting elements. For
su(2), this subalgebra is generated by a single element; we chose σ0. For su(3), this subalgebra
has dimension two; we chose the Gell-Mann matrices λ3 and λ8 as generators.

A Cartan subalgebra h of a Lie algebra g is a maximal subalgebra of simultaneously
diagonalizable elements. Equivalently, the Cartan subalgebra of a simple Lie algebra is
a maximal subalgebra generated by non-null commuting elements. The dimension of the
Cartan subalgebra is independent of which of the many possible subalgebras is chosen.

The requirement that the elements be diagonalizable (in the adjoint representation) is
nontrivial, as can be seen by considering the element

λ1 − µ2 =





0 1 0
0 0 0
0 0 0



 (160)

of su(3), which is null—and not diagonalizable. In higher dimensions, the inadvertent use of
such elements can cause one to miscount the size of the Cartan subalgebra. For instance, in
su(4), it is possible to find four mutually commuting elements that are linearly independent,
although all of them are null, and none are diagonalizable. At most three elements of su(4)
can be simultaneously diagonalized; its Cartan subalgebra is 3-dimensional.

For su(2), the Cartan subalgebra is given by all multiples of σ0, and for su(3) we have

h = 〈λ3, λ8〉 (161)

where the angled brackets denote the span of the given elements.

Basis of Eigenvectors

Since the elements of h can be simultaneously diagonalized, by definition there is a basis
consisting entirely of simultaneous eigenvectors of the elements of h. For su(3), this basis
consists of {λ3, λ8,

1

2
(λ1 ∓ µ2),

1

2
(λ4 ∓ µ5),

1

2
(λ5 ∓ µ7). For instance,

[λ3, λ4 ∓ µ5] = ∓(λ4 ∓ µ5), [λ8, λ4 ∓ µ5] = ∓
√
3(λ4 ∓ µ5). (162)
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Notice that any element of h has each basis element as an eigenvector, not just λ3 and λ8.
So, for instance,

[aλ3 + bλ8, λ4 ∓ µ5] = ∓(a+ b
√
3)λ4 ∓ µ5. (163)

Rather than identify the eigenspaces containing λ4 ∓ µ5 by their eigenvalues under λ3 and
λ8, we can instead label these eigenspaces by operators that gives the eigenvalue for any

element of h.
What are the properties of these operators? Let’s call them ±α2, since the eigenvalues

for these two subspaces are equal and opposite for any element of h. We know that

α2(λ3) = −1, α2(λ8) = −
√
3, (164)

and in fact
α2(aλ3 + bλ8) = −(a+ b

√
3). (165)

Thus, α2 is a linear operator on h, that is, α2 is in the dual space h∗. We can repeat this
process with the remaining eigenspaces, resulting in a total of six elements of h∗—for this
purpose, we don’t count h itself as an eigenspace, although of course it is, with all eigenvalues
zero.

Roots

More generally, we can decompose any simple Lie algebra as

g = h ⊕
α∈R

gα (166)

for some finite collection R of α ∈ h∗, where

H ∈ h, X ∈ gα =⇒ [H,X] = α(H)X. (167)

The α are called the roots of g.

Orthogonality

Suppose that X ∈ gα and Y ∈ gβ. Then

[H,X] = α(H)X, [H, Y ] = β(H)Y, (168)

for any H ∈ h. We compute

[

H, [X, Y ]
]

=
[

[H,X], Y
]

+
[

X, [H, Y ]
]

=
(

α(H) + β(H)
)

[X, Y ] (169)

so that
[X, Y ] ∈ gα+β. (170)

Thus, X ∈ gα maps gβ to gα+β—although the latter might be the trivial vector space {0}.
In other words, each X 6∈ h changes at least some eigenvalues. Similarly, X followed by Y
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(or vice versa) changes at least some eigenvalues—unless α+ β = 0. Since our basis consists
of eigenvectors, we have shown that

α + β 6= 0 =⇒ B(gα, gβ) = 0, (171)

since a nonzero trace requires there to be elements whose eigenvalues do not change. Since
we do not count β = 0 as a root, we write that case separately, namely

α 6= 0 =⇒ B(gα, h) = 0, (172)

but the argument is the same.
What about h? If H,K ∈ h and X ∈ gα, then

[

H, [K,X]
]

=
[

K, [H,X]
]

= α(H)α(K)X. (173)

Thus, the inner product on h is

B(H,K) =
∑

α∈R
α(H)α(K). (174)

This inner product is nondegenerate, and so h admits an orthonormal basis.

Symmetry about the Origin

We now claim that if α ∈ R then also −α ∈ R. We have already seen that the roots of su(3)
have this property; we now prove it in general.

Suppose α is a root, but not −α. Then gα ⊥ g, since we showed above that gα is
perpendicular to all elements not in g−α! By the assumed non-degeneracy of B, this can’t
happen, so g−α must contain a nonzero vector.

Thus, the roots always come in pairs, symmetric about the origin.

su(2) Subalgebras

Continuing along these lines, it turns out that each {g±α} pair generates an su(2) subalgebra
of g. We outline this construction here, but omit most of the details.

For Xα ∈ gα, Yα ∈ g−α, the argument used above to show orthogonality now shows that
[X, Y ] ∈ h. Using non-degeneracy, we can show that Hα = [X, Y ] 6= 0. Thus, 〈Hα, Xα, Yα〉 is
a subalgebra of g; by rescaling if necessary we can bring the commutators into the standard
form for su(2) (really sl(2,R)). In particular, we can choose roots satisfying 6

α(Hα) = 1. (175)

But we have already analyzed the representations of su(2)! In particular, all eigenvalues
of (standard) su(2) in any representation must be in 1

2
Z! Thus, α(Hβ) must be a half-integer,

6Our choice of normalization is nonstandard; the usual choice is α(Hα) = 2, requiring the addition of
several factors of 2 elsewhere in the derivation.
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and in particular must be real, for any combination of our preferred elements Hβ ∈ h and
preferred roots α ∈ R.

From this point on, we work with the split real form of g, restricting if necessary to real
linear combinations of the Hα, Xα, and Yα, and of the preferred roots satisfying (175). In
particular, the Killing form (174) on h is now positive definite.

We illustrate this construction with su(3). We have the orthonormal basis for h given by
{λ3, λ8}, and

[

1

2
(λ1 − µ2),

1

2
(λ1 + µ2)

]

= 2

(

λ3

2

)

(176)

so these three elements (with the factors of 1

2
) form a standard basis for sl(2,R). Thus, we

can choose

H1 =
1

2
λ3 (177)

and define α1 ∈ h∗ by
α1(λ3) = 2, α1(λ8) = 0. (178)

Similarly,

[

1

2
(λ4 − µ5),

1

2
(λ4 + µ5)

]

= −2

(

λ3 + λ8

4

)

, (179)

[

1

2
(λ6 − µ7),

1

2
(λ6 + µ7)

]

= −2

(

λ3 − λ8

4

)

, (180)

yielding

H2 = −1

4
(λ3 + λ8), H3 = −1

4
(λ3 − λ8), (181)

and leading to

α2(λ3) = −1, α2(λ8) = −
√
3, α3(λ3) = −1, α3(λ8) = +

√
3. (182)

The roots of su(3) are then {±α1,±α2,±α3}.

Root Angles

The final piece of this construction is to determine the angles between the roots. Since
α ∈ h∗, there are unique elements Tα ∈ h such that

B(Tα, H) = α(H) (183)

for any H ∈ h. It is not hard to show that

Tα =
Hα

B(Hα, Hα)
. (184)
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cos θ −1 −
√
3

2
− 1√

2
−1

2
0 1

2

1√
2

√
3

2
1

θ π 5π
6

3π
4

2π
3

π
2

π
3

π
4

π
6

0

|β|
|α| 1,2

√
3

√
2 1 – 1

√
2

√
3 1,2

Table 1: The possible angles between roots, and ratios of their magnitudes. (See Footnote 7.)

Putting this all together, we have shown that

α(Hβ) = B(Tα, Hβ) =
B(Hα, Hβ)

B(Hα, Hα)
∈ 1

2
Z. (185)

There is a natural inner product on h∗, given by

α · β = B(Tα, Tβ). (186)

The angle between two roots is thus given by

cos2 θ =
(α · β)2

(α · α)(β · β) =
B(Hα, Hβ)

2

B(Hα, Hα)B(Hβ, Hβ)
= α(Hβ)β(Hα) ∈

1

4
Z, (187)

and we also have
α · β
β · β =

B(Hα, Hβ)

B(Hα, Hα)
= α(Hβ) ∈

1

2
Z. (188)

From these two relations we can work out not only the possible angles between two roots α
and β, but also the ratio of their lengths. The results are collected in Table 1. 7

Returning to su(3) and computing the Killing product in the adjoint representation, since
the {Xα, Yα} pairs are clearly related to each other by cyclic transformations, so are the Hα

(despite the asymmetric form of our basis element λ8). Thus,

B(H1, H1) = B(H2, H2) = B(H2, H2), (189)

so that
B(T1, T1) = B(T2, T2) = B(T2, T2), (190)

which in turn forces
α1 · α1 = α2 · α2 = α3 · α3 (191)

Similarly, all the cross terms will be equal, so it is enough to compute

cos θ =
α1 · α2√

α1 · α1

√
α2 · α2

=
α1 · α2

α1 · α1

=
B(H1, H2)

B(H1, H1)
=

B(1
2
λ3,−1

4
(λ3 + λ8))

B(1
2
λ3,

1

2
λ3)

= −1

2
(192)

(since λ3 and λ8 are orthogonal and have the same magnitude), so that θ = 2π
3
.

7The cases θ = 0 and θ = π do not actually occur, except for pairs of roots ±α.
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Remarkably, one obtains the same answer in this case by treating the pairs of eigenvalues

(αm(λ3), αm(λ3)) = (2, 0), (−1,−
√
3), (−1,

√
3) (193)

as Euclidean coordinates. This alternative derivation works only when the roots all have the
same magnitude, which, as can be seen from Table 1, is not always the case.
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