

Figure 1: The root diagram of $\mathfrak{s u}(2)$.

7 Representations of $\mathfrak{s u}(2)$

We have the following basis elements for $\mathfrak{s l}(2, \mathbb{R}) \cong \mathfrak{s u}\left(2, \mathbb{C}^{\prime}\right) \cong \mathfrak{s o}(2,1)$, a real form of $\mathfrak{s u}(2)$:

$$
\begin{equation*}
\sigma_{0}=\frac{1}{2} \sigma_{z}, \quad \sigma_{ \pm}=\frac{1}{2}\left(\sigma_{x} \mp s_{y}\right)=\frac{1}{2}\left(\sigma_{x} \pm i \sigma_{y}\right), \tag{133}
\end{equation*}
$$

with commutation relations

$$
\begin{equation*}
\left[\sigma_{0}, \sigma_{ \pm}\right]= \pm \sigma_{ \pm}, \quad\left[\sigma_{+}, \sigma_{-}\right]=2 \sigma_{0} \tag{134}
\end{equation*}
$$

These basis elements also form a basis of the complexified Lie algebra $\mathfrak{s u}(2) \otimes \mathbb{C}$.
We can thus represent $\mathfrak{s l}(2, \mathbb{R})$ graphically as the points $0, \pm 1 \in \mathbb{R}$, representing σ_{z} acting on itself and $\sigma_{ \pm}$, respectively, connected by oriented arrows representing the action of $\sigma_{ \pm}$, as shown in Figure 1. This diagram fully captures the algebraic description $\mathfrak{s l}(2, \mathbb{R})$ acting on itself, the so-called adjoint representation of $\mathfrak{s l}(2, \mathbb{R})$. Each of these statements can be reinterpreted as being about $\mathfrak{s u}(2) \otimes \mathbb{C}$; Figure 1 is normally called the root diagram of $\mathfrak{s u}(2)$.

We can now ask about more general representations of $\mathfrak{s u}(2)$, with $\rho(\mathfrak{s u}(2))$ acting on some vector space V. The commutation relations (134) show that σ_{0} is diagonal in the given basis. It turns out that $L_{z}=\rho\left(\sigma_{0}\right)$ is diagonalizable in any representation $\rho,{ }^{4}$ so we can choose a basis for V consisting entirely of eigenvectors of L_{z}. If $w \neq 0$ is one such eigenvector, we have

$$
\begin{equation*}
L_{z} w=\lambda w \tag{135}
\end{equation*}
$$

for some $w \in \mathbb{C}$. Letting $L_{ \pm}=\rho\left(\sigma_{ \pm}\right)$, we have

$$
\begin{equation*}
L_{z} L_{ \pm} w=\left[L_{z}, L_{ \pm}\right] w+L_{ \pm} L_{z} w= \pm L_{ \pm} w+L_{ \pm} \lambda w=(\lambda \pm 1) L_{ \pm} w \tag{136}
\end{equation*}
$$

Thus, $L_{ \pm} w$ is also an eigenvector of L_{z}, with eigenvalue $\lambda \pm 1$.
We want V to be an irreducible representation of $\mathfrak{s u}(2)$, by which we mean that there should be no (nonzero, proper) subrepresentations of $\mathfrak{s u}(2)$ in V. Thus, acting repeatedly on w with $L_{ \pm}$must generate a basis for V, as any vector not contained in the resulting span would itself generate a disjoint subrepresentation.

[^0]We also want V to be finite. Since we are changing the eigenvalue at each step, this can only happen if there is a "biggest" eigenvalue. That is, we can assume without loss of generality that

$$
\begin{equation*}
L_{+} w=0 \tag{137}
\end{equation*}
$$

and that the remaining basis vectors are obtained by repeated action of L_{-}.
We now compute

$$
\begin{align*}
L_{+} L_{-} w & =\left[L_{+}, L_{-}\right] w+L_{-} L_{+} w=2 L_{z} w=2 \lambda w \tag{138}\\
L_{+} L_{-} L_{-} w & =\left[L_{+}, L_{-}\right] L_{-} w+L_{-} L_{+} L_{-} w \\
& =2 L_{z} L_{-} w+2 \lambda L_{-} w=2(2 \lambda-1) L_{w} \tag{139}\\
\vdots & = \\
L_{+}\left(L_{-}\right)^{k} w & =\ldots=(2 k \lambda-k(k-1))\left(L_{-}\right)^{k-1} w \tag{140}
\end{align*}
$$

But for V to be finite, $\left(L_{-}\right)^{k} w$ must be zero for some positive integer k. Assume that k is the smallest such integer. Then $\left(L_{-}\right)^{k-1}$ is not zero, and therefore

$$
\begin{equation*}
2 k \lambda-k(k-1)=0 \tag{141}
\end{equation*}
$$

by (140). Since $k \neq 0$, we conclude first of all that

$$
\begin{equation*}
\lambda=\frac{k-1}{2} \tag{142}
\end{equation*}
$$

is an integer or half-integer, so that there are $k=2 \lambda+1$ basis vectors, with eigenvalues

$$
\begin{equation*}
\lambda, \lambda-1, \ldots, \lambda-2 \lambda=-\lambda \tag{143}
\end{equation*}
$$

We conclude that there is exactly one (irreducible) representation of $\mathfrak{s u}(2)$ for each dimension $k \geq 2$, with eigenvalues $\left\{-\frac{k-1}{2}, \ldots, \frac{k-1}{2}\right\}$. Put differently, we can reproduce the commutation relations (134) using $n \times n$ matrices for any $n \geq 2$, and can do so in essentially just one way (up to change of basis).

$8 \quad \mathfrak{s u}(3)$

The unitary group $\mathrm{SU}(3)$ consists of all 3×3 unitary matrices with determinant 1 , that is

$$
\begin{equation*}
\mathrm{SU}(3)=\left\{M \in \mathbb{C}^{3 \times 3}: M^{\dagger} M=1,|M|=1\right\} \tag{144}
\end{equation*}
$$

The group $\mathrm{SU}(3)$ is the smallest of the unitary groups to be unrelated to the orthogonal groups; it's something new. As is the case for $\mathfrak{s u}(2)$, the Lie algebra $\mathfrak{s u}(3)$ consists of all 3×3 tracefree, anti-Hermitian matrices, that is

$$
\begin{equation*}
\mathfrak{s u}(3)=\left\{A \in \mathbb{C}^{3 \times 3}: A^{\dagger}+A=0, \operatorname{tr}(A)=0\right\} . \tag{145}
\end{equation*}
$$

The standard basis for the complexified Lie algebra $\mathfrak{s u}(3) \otimes \mathbb{C}$ consists of the Gell-Mann matrices ${ }^{5}$

$$
\begin{array}{llrl}
\lambda_{1} & =\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), & \lambda_{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\lambda_{3} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), & \lambda_{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \\
\lambda_{5} & =\left(\begin{array}{ccc}
0 & 0 & i \\
0 & 0 & 0 \\
-i & 0 & 0
\end{array}\right), & \lambda_{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \\
\lambda_{7} & =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), & \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right) . \tag{146}
\end{array}
$$

As with the Pauli matrices, the Gell-Mann matrices are Hermitian; unlike the Pauli matrices, they do not square to ± 1. However, they are again orthonormal with respect to the Killing form (with overall normalization 2). We can obtain an anti-Hermitian basis of $\mathfrak{s u}(3)$ itself (that is, not complexified) by using the matrices

$$
\begin{equation*}
\mu_{m}=-i \lambda_{m} \tag{147}
\end{equation*}
$$

Alternatively, we can work with the real subset of these matrices, and study the real form $\mathfrak{s l}(3, \mathbb{R})$ of $\mathfrak{s u}(3)$, that is

$$
\begin{equation*}
\mathfrak{s l}(3, \mathbb{R})=\left\langle\lambda_{1}, \mu_{2}, \lambda_{3}, \lambda_{4}, \mu_{5}, \lambda_{6}, \mu_{7}, \lambda_{8}\right\rangle \tag{148}
\end{equation*}
$$

where $\langle\ldots\rangle$ denotes the span of the given elements, that is, the set of all linear combinations of these elements. By inspection, $\mathfrak{s l}(3, \mathbb{R})$ contains 5 boosts and 3 rotations.

[^1]

Figure 2: The root diagram of $\mathfrak{s u}(3)$.

The given form of these matrices makes clear that λ_{3} and λ_{8} commute with each other, and that no larger set of basis elements will do so. The advantage of working with $\mathfrak{s l}(3, \mathbb{R})$ is that these real symmetric matrices have real eigenvalues; at the Lie algebra level, their real eigenvectors will lie inside the algebra, without the need for complexification.

Explicitly, we have the commutation relations

$$
\begin{array}{rlrl}
{\left[\lambda_{3}, \lambda_{8}\right]} & =0, \\
{\left[\lambda_{3}, \frac{1}{2}\left(\lambda_{1} \mp \mu_{2}\right)\right]} & = \pm \frac{2}{2}\left(\lambda_{1} \mp \mu_{2}\right), & {\left[\lambda_{8}, \frac{1}{2}\left(\lambda_{1} \mp \mu_{2}\right)\right]=0,} \\
{\left[\lambda_{3}, \frac{1}{2}\left(\lambda_{4} \mp \mu_{5}\right)\right]} & =\mp \frac{1}{2}\left(\lambda_{4} \mp \mu_{5}\right), & {\left[\lambda_{8}, \frac{1}{2}\left(\lambda_{4} \mp \mu_{5}\right)\right]=\mp \frac{\sqrt{3}}{2}\left(\lambda_{4} \mp \mu_{5}\right),} \\
{\left[\lambda_{3}, \frac{1}{2}\left(\lambda_{6} \mp \mu_{7}\right)\right]} & =\mp \frac{1}{2}\left(\lambda_{6} \mp \mu_{7}\right), & {\left[\lambda_{8}, \frac{1}{2}\left(\lambda_{6} \mp \mu_{7}\right)\right]= \pm \frac{\sqrt{3}}{2}\left(\lambda_{6} \mp \mu_{7}\right) .} \tag{149}
\end{array}
$$

Regarding the eigenvalues as vectors in \mathbb{R}^{2}, we can identify our basis elements with their eigenvalues, as follows:

$$
\begin{align*}
& \frac{1}{2}\left(\lambda_{1} \mp \mu_{2}\right) \longleftrightarrow(\pm 2,0), \\
& \frac{1}{2}\left(\lambda_{4} \mp \mu_{6}\right) \longleftrightarrow(\mp 1, \mp 3), \\
& \frac{1}{2}\left(\lambda_{6} \mp \mu_{7}\right) \longleftrightarrow(\mp 1, \pm 3), \tag{150}
\end{align*}
$$

and both λ_{3} and λ_{8} correspond to $(0,0)$. As with $\mathfrak{s u}(2)$, we recover almost all of the structure of the Lie algebra by plotting these points. The result is shown in Figure 2, and is called the root diagram of $\mathfrak{s u}(3)$. Each family of parallel lines represents the action of one of the three pairs of eigenvectors on the other eigenvectors; again, the eigenvectors can be thought of as raising and lowering operators. It is a useful exercise to work out all the commutators, and to compare the result with the root diagram.

[^0]: ${ }^{4}$ This property holds for any semisimple Lie algebra, one for which the Killing form B is nondegenerate, but is not true in general.

[^1]: ${ }^{5}$ Our definition of λ_{5} differs by an overall minus sign from the standard definition, in order to correct a minor but annoying lack of cyclic symmetry in the original definition.

