$3 \quad \mathrm{SU}(2)$

Representations

Just as orthogonal groups preserve the magnitude of real vectors, the unitary groups preserve the magnitude of complex vectors. The "rotation" group in two complex dimensions is known as $\mathrm{SU}(2)$. If $v \in \mathbb{C}^{2}$, its magnitude is defined by

$$
\begin{equation*}
|v|^{2}=v^{\dagger} v \tag{42}
\end{equation*}
$$

where \dagger denotes the conjugate transpose, that is

$$
\begin{equation*}
v^{\dagger}=\bar{v}^{T} . \tag{43}
\end{equation*}
$$

The magnitude of a complex vector is still a non-negative real number, just as for real vectors.
So if we want to preserve the magnitude of v, we must have

$$
\begin{equation*}
(M v)^{\dagger}(M v)=\left(v^{\dagger} M^{\dagger}\right)(M v)=v^{\dagger} v \tag{44}
\end{equation*}
$$

or simply

$$
\begin{equation*}
M^{\dagger} M=1 \tag{45}
\end{equation*}
$$

Matrices satisfying (45) are called unitary matrices; the "U" in $\mathrm{SU}(2)$ stands for unitary. As before, the " S " stands for special, and refers to the additional condition that

$$
\begin{equation*}
|M|=1 \tag{46}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
\mathrm{SU}(2)=\left\{M \in \mathbb{C}^{2 \times 2}: M^{\dagger} M=1,|M|=1\right\} \tag{47}
\end{equation*}
$$

It's not that difficult to find the most general matrix satisfying (45) and (46), but let's first ask how many degrees of freedom there are. A 2×2 complex matrix has 8 real degrees of freedom, the matrix equation (45) imposes 4 constraints, and the determinant condition (46) imposes one more constraint. Thus, we expect 3 parameters in our general element-just as for $\mathrm{SO}(3)$.

Let's start with some examples. Our old friend $M(\phi) \in \mathrm{SO}(2)$ is in $\mathrm{SU}(2)$, but we give it a new name, writing

$$
S_{y}(\alpha)=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \tag{48}\\
\sin \alpha & \cos \alpha
\end{array}\right)
$$

Other examples of unitary matrices are

$$
S_{x}(\alpha)=\left(\begin{array}{cc}
\cos \alpha & -i \sin \alpha \tag{49}\\
-i \sin \alpha & \cos \alpha
\end{array}\right), \quad S_{z}(\alpha)=\left(\begin{array}{cc}
e^{-i \alpha} & 0 \\
0 & e^{i \alpha}
\end{array}\right)
$$

Derivatives

We know what to do next: Differentiate! So consider

$$
\begin{align*}
& s_{y}=\dot{S}_{y}=S_{y}^{\prime}(0)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \tag{50}\\
& s_{x}=\dot{S}_{x}=S_{x}^{\prime}(0)=\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right) \tag{51}\\
& s_{z}=\dot{S}_{z}=S_{z}^{\prime}(0)=\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right) \tag{52}
\end{align*}
$$

These matrices are linearly independent, and therefore span the tangent space at the identity. So what? Well, let's compute the commutators. The result is

$$
\begin{equation*}
\left[s_{x}, s_{y}\right]=2 s_{z}, \quad\left[s_{y}, s_{z}\right]=2 s_{x}, \quad\left[s_{z}, s_{x}\right]=2 s_{y} \tag{53}
\end{equation*}
$$

In other words, the commutators resulting from $\mathrm{SU}(2)$ are the same ${ }^{1}$ as those resulting from $\mathrm{SO}(3)$. So the infinitesimal versions of these two groups are the same. So they're the same group-at least locally.

Comparison with SO(3)

We can realize this identification explicitly by considering matrices of the form

$$
X=\left(\begin{array}{cc}
z & x-i y \tag{54}\\
x+i y & -z
\end{array}\right)
$$

The matrix X is tracefree, that is

$$
\begin{equation*}
\operatorname{tr}(X)=0 \tag{55}
\end{equation*}
$$

and Hermitian, that is,

$$
\begin{equation*}
X^{\dagger}=X \tag{56}
\end{equation*}
$$

We can act on X with $\mathrm{SU}(2)$ via the action

$$
\begin{equation*}
X \longmapsto M X M^{\dagger} \tag{57}
\end{equation*}
$$

which preserves both of these conditions. Furthermore, we have

$$
\begin{equation*}
|X|=-\left(x^{2}+y^{2}+z^{2}\right) \tag{58}
\end{equation*}
$$

and, since $|M|=1$,

$$
\begin{equation*}
\left|M X M^{\dagger}\right|=|X| \tag{59}
\end{equation*}
$$

Thus, M can be identified with an element of $\mathrm{SO}(3)$!

[^0]However, that's not the whole story. Since there are $2 M$ s in our action, we can not tell the actions of $\pm M$ apart. Thus, $\mathrm{SU}(2)$ is the double cover of $\mathrm{SO}(3)$. These two groups have different global structure, but their local structure is the same.

Every orthogonal group $\mathrm{SO}(n)$ admits such a double cover, but $\mathrm{SO}(3)$ is the only one whose double cover is a unitary group. The double cover of $\operatorname{SO}(n)$ is called $\operatorname{Spin}(n)$; we have shown that

$$
\begin{equation*}
\operatorname{Spin}(3) \cong \operatorname{SU}(2) \tag{60}
\end{equation*}
$$

But our interest is in the local structure, and $\mathrm{SU}(2)$ is the same as $\mathrm{SO}(3)$ locally.

Properties

You may recognize the s_{m} as being i times the corresponding Pauli matrices, that is,

$$
\begin{equation*}
s_{m}=-i \sigma_{m} . \tag{61}
\end{equation*}
$$

What are the properties of the Pauli matrices? They are Hermitian, they are tracefree, and they square to the identity, that is

$$
\begin{align*}
\sigma_{m}^{\dagger} & =\sigma_{m} \tag{62}\\
\operatorname{tr}\left(\sigma_{m}\right) & =0 \tag{63}\\
\sigma_{m}^{2} & =1 \tag{64}
\end{align*}
$$

Similarly, the s_{m} are anti-Hermitian, tracefree, and square to minus the identity, that is

$$
\begin{align*}
s_{m}^{\dagger} & =-s_{m} \tag{65}\\
\operatorname{tr}\left(s_{m}\right) & =0 \tag{66}\\
s_{m}^{2} & =-1 \tag{67}
\end{align*}
$$

More generally, if $M(\alpha)$ is any family of elements of $\mathrm{SU}(2)$ such that $M(0)=1$, then $M(\alpha)^{\dagger} M(\alpha)=1$ by (45). Differentiating this equation, we obtain

$$
\begin{equation*}
M^{\prime}(\alpha)^{\dagger} M(\alpha)+M(\alpha)^{\dagger} M^{\prime}(\alpha)=0 \tag{68}
\end{equation*}
$$

and evaluating this result at $\alpha=0$ yields

$$
\begin{equation*}
A^{\dagger}+A=0 \tag{69}
\end{equation*}
$$

where we have written A for $\dot{M}=M^{\prime}(0)$. This argument is true quite generally: If the elements of a Lie group are unitary matrices, then the elements of the corresponding Lie algebra are anti-Hermtian. Thus, we can describe the Lie algebra $\mathfrak{s u}(2)$ of $\operatorname{SU}(2)$ as

$$
\begin{equation*}
\mathfrak{s u}(2)=\left\{A \in \mathbb{C}^{2 \times 2}: A^{\dagger}+A=0, \operatorname{tr}(A)=0\right\} . \tag{70}
\end{equation*}
$$

The same argument shows that infinitesimal orthogonal matrices are antisymmetric, as you can verify in the case of $\mathrm{SO}(3)$ and $\mathfrak{s o}(3)$. Thus,

$$
\begin{align*}
\mathrm{SO}(3) & =\left\{M \in \mathbb{R}^{3 \times 3}: M^{T} M=1,|M|=1\right\}, \tag{71}\\
\mathfrak{s o}(3) & =\left\{A \in \mathbb{R}^{3 \times 3}: A^{T}+A=0, \operatorname{tr}(A)=0\right\} \tag{72}
\end{align*}
$$

and we have shown that

$$
\begin{equation*}
\mathfrak{s u}(2) \cong \mathfrak{s o}(3) \tag{73}
\end{equation*}
$$

not merely as vector spaces, but as Lie algebras (since commutators are preserved).

[^0]: ${ }^{1}$ The factor of 2 can easily be eliminated by dividing each of our basis elements s_{m} by 2 , or equivalently by replacing α by $\alpha / 2$ in S_{m}.

