
3 SU(2)

Representations

Just as orthogonal groups preserve the magnitude of real vectors, the unitary groups preserve
the magnitude of complex vectors. The “rotation” group in two complex dimensions is known
as SU(2). If v ∈ C

2, its magnitude is defined by

|v|2 = v†v (42)

where † denotes the conjugate transpose, that is

v† = vT . (43)

The magnitude of a complex vector is still a non-negative real number, just as for real vectors.
So if we want to preserve the magnitude of v, we must have

(Mv)†(Mv) = (v†M †)(Mv) = v†v (44)

or simply
M †M = 1. (45)

Matrices satisfying (45) are called unitary matrices; the “U” in SU(2) stands for unitary. As
before, the “S” stands for special, and refers to the additional condition that

|M | = 1. (46)

Thus, we have
SU(2) = {M ∈ C

2×2 : M †M = 1, |M | = 1}. (47)

It’s not that difficult to find the most general matrix satisfying (45) and (46), but let’s
first ask how many degrees of freedom there are. A 2×2 complex matrix has 8 real degrees of
freedom, the matrix equation (45) imposes 4 constraints, and the determinant condition (46)
imposes one more constraint. Thus, we expect 3 parameters in our general element—just as
for SO(3).

Let’s start with some examples. Our old friend M(φ) ∈ SO(2) is in SU(2), but we give
it a new name, writing

Sy(α) =

(

cosα − sinα
sinα cosα

)

. (48)

Other examples of unitary matrices are

Sx(α) =

(

cosα −i sinα
−i sinα cosα

)

, Sz(α) =

(

e−iα 0
0 eiα

)

. (49)
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Derivatives

We know what to do next: Differentiate! So consider

sy = Ṡy = S ′
y(0) =

(

0 −1
1 0

)

, (50)

sx = Ṡx = S ′
x(0) =

(

0 −i

−i 0

)

, (51)

sz = Ṡz = S ′
z(0) =

(

−i 0
0 i

)

. (52)

These matrices are linearly independent, and therefore span the tangent space at the identity.
So what? Well, let’s compute the commutators. The result is

[sx, sy] = 2sz, [sy, sz] = 2sx, [sz, sx] = 2sy. (53)

In other words, the commutators resulting from SU(2) are the same 1 as those resulting from
SO(3). So the infinitesimal versions of these two groups are the same. So they’re the same
group—at least locally.

Comparison with SO(3)

We can realize this identification explicitly by considering matrices of the form

X =

(

z x− iy

x+ iy −z

)

. (54)

The matrix X is tracefree, that is
tr (X) = 0, (55)

and Hermitian, that is,
X† = X. (56)

We can act on X with SU(2) via the action

X 7−→ MXM † (57)

which preserves both of these conditions. Furthermore, we have

|X| = −(x2 + y2 + z2), (58)

and, since |M | = 1,
|MXM †| = |X| (59)

Thus, M can be identified with an element of SO(3)!

1The factor of 2 can easily be eliminated by dividing each of our basis elements sm by 2, or equivalently

by replacing α by α/2 in Sm.
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However, that’s not the whole story. Since there are 2 Ms in our action, we can not tell
the actions of ±M apart. Thus, SU(2) is the double cover of SO(3). These two groups have
different global structure, but their local structure is the same.

Every orthogonal group SO(n) admits such a double cover, but SO(3) is the only one
whose double cover is a unitary group. The double cover of SO(n) is called Spin(n); we have
shown that

Spin(3) ∼= SU(2). (60)

But our interest is in the local structure, and SU(2) is the same as SO(3) locally.

Properties

You may recognize the sm as being i times the corresponding Pauli matrices, that is,

sm = −iσm. (61)

What are the properties of the Pauli matrices? They are Hermitian, they are tracefree, and
they square to the identity, that is

σ†
m = σm, (62)

tr (σm) = 0, (63)

σ2

m = 1. (64)

Similarly, the sm are anti-Hermitian, tracefree, and square to minus the identity, that is

s†m = −sm, (65)

tr (sm) = 0, (66)

s2m = −1. (67)

More generally, if M(α) is any family of elements of SU(2) such that M(0) = 1, then
M(α)†M(α) = 1 by (45). Differentiating this equation, we obtain

M ′(α)†M(α) +M(α)†M ′(α) = 0 (68)

and evaluating this result at α = 0 yields

A† + A = 0 (69)

where we have written A for Ṁ = M ′(0). This argument is true quite generally: If the

elements of a Lie group are unitary matrices, then the elements of the corresponding Lie

algebra are anti-Hermtian. Thus, we can describe the Lie algebra su(2) of SU(2) as

su(2) = {A ∈ C
2×2 : A† + A = 0, tr (A) = 0}. (70)
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The same argument shows that infinitesimal orthogonal matrices are antisymmetric, as you
can verify in the case of SO(3) and so(3). Thus,

SO(3) = {M ∈ R
3×3 : MTM = 1, |M | = 1}, (71)

so(3) = {A ∈ R
3×3 : AT + A = 0, tr (A) = 0} (72)

and we have shown that
su(2) ∼= so(3) (73)

not merely as vector spaces, but as Lie algebras (since commutators are preserved).
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