THE GEOMETRY OF THE EXCEPTIONAL LIE GROUPS

Tevian Dray
Oregon State University

March 31, 2016

Only wimps specialize in the general case; real scientists pursue examples.
(attributed to Beresford Parlett by Sir Michael Berry)

Copyright © 2016 by Tevian Dray

$1 \quad \mathrm{SO}(2)$

Representations

The rotation group in two Euclidean dimensions is known as $\mathrm{SO}(2)$. How many representations of this group can you think of?

The first representation of $\mathrm{SO}(2)$ we consider is in terms of 2×2 matrices, of the form

$$
M(\phi)=\left(\begin{array}{cc}
\cos \phi & -\sin \phi \tag{1}\\
\sin \phi & \cos \phi
\end{array}\right) .
$$

The "O" in $\mathrm{SO}(2)$ stands for orthogonal. Orthogonal matrices satisfy

$$
\begin{equation*}
M^{T} M=1 \tag{2}
\end{equation*}
$$

where T denotes matrix transpose, and where we write simply 1 for the identity matrix (rather than I, for which we will have another use). Such matrices preserve the (squared) magnitude

$$
\begin{equation*}
|v|^{2}=v^{T} v \tag{3}
\end{equation*}
$$

of a vector $v \in \mathbb{R}^{2}$, since

$$
\begin{equation*}
(M v)^{T}(M v)=\left(v^{T} M^{T}\right)(M v)=v^{T} v \tag{4}
\end{equation*}
$$

The " S " in $\mathrm{SO}(2)$ stands for special, and refers to the additional condition that

$$
\begin{equation*}
|M|=\operatorname{det}(M)=1 . \tag{5}
\end{equation*}
$$

Orthogonal matrices M with $|M|=1$ are rotations; if $|M|=-1$, the only other possibility, they are reflections.

Our second representation of $\mathrm{SO}(2)$ is in terms of the complex numbers, of the form

$$
\begin{equation*}
w(\phi)=e^{i \phi} . \tag{6}
\end{equation*}
$$

Such complex numbers have norm 1, that is

$$
\begin{equation*}
|w(\phi)|^{2}=w \bar{w}=1 \tag{7}
\end{equation*}
$$

and preserve the magnitude $|z|$ of any complex number $z \in \mathbb{C}$, since

$$
\begin{equation*}
|w z|=|w||z|=|z| . \tag{8}
\end{equation*}
$$

Sound familiar?
Our third representation of $\mathrm{SO}(2)$ is purely geometric. Rotations are rigid transformations of \mathbb{R}^{2}, obtained by, well, rotating the plane through a given angle ϕ. In other words, the rotations in $\mathrm{SO}(2)$ are in one-to-one correspondence with the angles in the (unit) circle, that is, with the circle itself. Thus, $\mathrm{SO}(2)$ can be thought of as the circle \mathbb{S}^{1}.

Take a moment to compare and contrast these various representations of $\mathrm{SO}(2)$. What are their properties?

Properties

The geometric representation makes clear that $\mathrm{SO}(2)$ is a group; the composition of two rotations is another rotation. In matrix language, we have

$$
\begin{equation*}
M(\alpha+\beta)=M(\alpha) M(\beta) \tag{9}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
e^{i(\alpha+\beta)}=e^{i \alpha} e^{i \beta} \tag{10}
\end{equation*}
$$

for complex numbers. Setting $\alpha=0$ corresponds to the identity element, and setting $\beta=-\alpha$ leads immediately to inverse elements.

Our two algebraic representations are clearly closely related. The identification of $M(\phi)$ with $e^{i \phi}$ suggests the further identification

$$
x+i y \longleftrightarrow\left(\begin{array}{cc}
x & -y \\
y & x
\end{array}\right)
$$

This identification seems even more reasonable after writing

$$
\left(\begin{array}{cc}
x & -y \tag{11}\\
y & x
\end{array}\right)=x 1+y \Omega
$$

where again 1 denotes the identity matrix, and

$$
\Omega=\left(\begin{array}{cc}
0 & -1 \tag{12}\\
1 & 0
\end{array}\right)
$$

Notice that $\Omega^{2}=-1$!
We note for future reference both that

$$
\begin{equation*}
\Omega=M^{\prime}(0) \tag{13}
\end{equation*}
$$

and that

$$
\begin{equation*}
M(\phi)=e^{\Omega \phi} \tag{14}
\end{equation*}
$$

where matrix exponentiation is formally defined in terms of a power series (which always converges).

Returning to our geometric representation, since $\mathrm{SO}(2)$ can be thought of as \mathbb{S}^{1}, it is a smooth manifold, that is, it is a smooth 1-surface (i.e. a curve), on which one can introduce coordinates (e.g. ϕ). Thus, $\mathrm{SO}(2)$ is both a group and a manifold; it is our first example of a Lie group.

In the language of vector calculus, we can introduce a vector field that is tangent to \mathbb{S}^{1}. One possible choice would be the unit vector tangent to the circle, often written $\widehat{\phi}$. In the language of differential geometry, however, vector fields are interpreted as directional derivative operators, so that

$$
\begin{equation*}
\overrightarrow{\boldsymbol{v}}(f)=\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}} f \tag{15}
\end{equation*}
$$

Since

$$
\begin{equation*}
\widehat{\phi} \cdot \overrightarrow{\boldsymbol{\nabla}} f=\frac{1}{r} \frac{\partial f}{\partial \phi} \tag{16}
\end{equation*}
$$

we choose instead the tangent vector

$$
\begin{equation*}
r \widehat{\boldsymbol{\phi}}=x \widehat{\boldsymbol{y}}-y \widehat{\boldsymbol{x}} \tag{17}
\end{equation*}
$$

Equivalently, as differential operators we choose

$$
\begin{equation*}
\partial_{\phi}=x \partial_{y}-y \partial_{x} \tag{18}
\end{equation*}
$$

where we have introduced the notation ∂_{q} for $\frac{\partial}{\partial q}$.
What do tangent vectors look like in the complex representation of $\mathrm{SO}(2)$? Take the derivative! We have

$$
\begin{equation*}
\frac{d w}{d \phi}=i w=i e^{i \phi} \tag{19}
\end{equation*}
$$

What does this result mean geometrically?
Evaluate this derivative first at the identity element, where $\phi=0$. At the point $z=1$, this derivative is i. But the i-direction is vertical; this direction is tangent to the circle at $z=1$. A similar argument works at any point on the circle; $i w$ always represents the direction rotated $\frac{\pi}{2}$ counterclockwise from w-precisely the direction tangent to the circle.

Finally, consider the matrix representation of $\mathrm{SO}(2)$. Again, take the derivative, yielding

$$
A=M^{\prime}(0)=\left(\begin{array}{cc}
0 & -1 \tag{20}\\
1 & 0
\end{array}\right)
$$

At other points on the circle, we have

$$
M^{\prime}(\alpha)=\left(\begin{array}{cc}
-\sin \phi & -\cos \phi \tag{21}\\
\cos \phi & -\sin \phi
\end{array}\right)=M(\alpha) A .
$$

This relationship between the derivative of a path in the group at any point and its derivative at the identity element is a hallmark of the study of Lie groups, and allows us to study such groups by studying their derivatives at the identity element, a much simpler process.

