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Figure 1: The root diagram of su(2).

7 Representations of su(2)

We have the following basis elements for sl(2,R) ∼= su(2,C′) ∼= so(2, 1), a real form of su(2):

σ0 =
1

2
σz, σ± =

1

2
(σx ∓ sy) =

1

2
(σx ± iσy), (133)

with commutation relations

[σ0, σ±] = ±σ±, [σ+, σ−] = 2σ0. (134)

These basis elements also form a basis of the complexified Lie algebra su(2)⊗ C.
We can thus represent sl(2,R) graphically as the points 0,±1 ∈ R, representing σz acting

on itself and σ±, respectively, connected by oriented arrows representing the action of σ±,
as shown in Figure 1. This diagram fully captures the algebraic description sl(2,R) acting
on itself, the so-called adjoint representation of sl(2,R). Each of these statements can be
reinterpreted as being about su(2)⊗C; Figure 1 is normally called the root diagram of su(2).

We can now ask about more general representations of su(2), with ρ(su(2)) acting on
some vector space V . The commutation relations (134) show that σ0 is diagonal in the given
basis. It turns out that Lz = ρ(σ0) is diagonalizable in any representation ρ, 4 so we can
choose a basis for V consisting entirely of eigenvectors of Lz. If w 6= 0 is one such eigenvector,
we have

Lzw = λw (135)

for some w ∈ C. Letting L± = ρ(σ±), we have

LzL±w = [Lz, L±]w + L±Lzw = ±L±w + L±λw = (λ± 1)L±w (136)

Thus, L±w is also an eigenvector of Lz, with eigenvalue λ± 1.
We want V to be an irreducible representation of su(2), by which we mean that there

should be no (nonzero, proper) subrepresentations of su(2) in V . Thus, acting repeatedly
on w with L± must generate a basis for V , as any vector not contained in the resulting span
would itself generate a disjoint subrepresentation.

4This property holds for any semisimple Lie algebra, one for which the Killing form B is nondegenerate,

but is not true in general.
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We also want V to be finite. Since we are changing the eigenvalue at each step, this
can only happen if there is a “biggest” eigenvalue. That is, we can assume without loss of
generality that

L+w = 0 (137)

and that the remaining basis vectors are obtained by repeated action of L−.
We now compute

L+L−w = [L+, L−]w + L−L+w = 2Lzw = 2λw (138)

L+L−L−w = [L+, L−]L−w + L−L+L−w

= 2LzL−w + 2λL−w = 2(2λ− 1)Lw (139)

... =
...

L+(L−)
kw = ... =

(

2kλ− k(k − 1)
)

(L−)
k−1w (140)

But for V to be finite, (L−)
kw must be zero for some positive integer k. Assume that k is

the smallest such integer. Then (L−)
k−1 is not zero, and therefore

2kλ− k(k − 1) = 0 (141)

by (140). Since k 6= 0, we conclude first of all that

λ =
k − 1

2
(142)

is an integer or half-integer, so that there are k = 2λ+ 1 basis vectors, with eigenvalues

λ, λ− 1, ..., λ− 2λ = −λ. (143)

We conclude that there is exactly one (irreducible) representation of su(2) for each di-
mension k ≥ 2, with eigenvalues {−k−1

2
, ..., k−1

2
}. Put differently, we can reproduce the

commutation relations (134) using n×n matrices for any n ≥ 2, and can do so in essentially
just one way (up to change of basis).
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8 su(3)

The unitary group SU(3) consists of all 3× 3 unitary matrices with determinant 1, that is

SU(3) = {M ∈ C
3×3 : M †M = 1, |M | = 1}. (144)

The group SU(3) is the smallest of the unitary groups to be unrelated to the orthogonal
groups; it’s something new. As is the case for su(2), the Lie algebra su(3) consists of all
3× 3 tracefree, anti-Hermitian matrices, that is

su(3) = {A ∈ C
3×3 : A† + A = 0, tr (A) = 0}. (145)

The standard basis for the complexified Lie algebra su(3)⊗C consists of the Gell-Mann

matrices 5

λ1 =





0 1 0
1 0 0
0 0 0



 , λ2 =





0 −i 0
i 0 0
0 0 0



 ,

λ3 =





1 0 0
0 −1 0
0 0 0



 , λ4 =





0 0 1
0 0 0
1 0 0



 ,

λ5 =





0 0 i

0 0 0
−i 0 0



 , λ6 =





0 0 0
0 0 1
0 1 0



 ,

λ7 =





0 0 0
0 0 −i
0 i 0



 , λ8 =
1√
3





1 0 0
0 1 0
0 0 −2



 . (146)

As with the Pauli matrices, the Gell-Mann matrices are Hermitian; unlike the Pauli matrices,
they do not square to ±1. However, they are again orthonormal with respect to the Killing
form (with overall normalization 2). We can obtain an anti-Hermitian basis of su(3) itself
(that is, not complexified) by using the matrices

µm = −iλm (147)

Alternatively, we can work with the real subset of these matrices, and study the real form
sl(3,R) of su(3), that is

sl(3,R) = 〈λ1, µ2, λ3, λ4, µ5, λ6, µ7, λ8〉 (148)

where 〈...〉 denotes the span of the given elements, that is, the set of all linear combinations
of these elements. By inspection, sl(3,R) contains 5 boosts and 3 rotations.

5Our definition of λ5 differs by an overall minus sign from the standard definition, in order to correct a

minor but annoying lack of cyclic symmetry in the original definition.
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Figure 2: The root diagram of su(3).

The given form of these matrices makes clear that λ3 and λ8 commute with each other,
and that no larger set of basis elements will do so. The advantage of working with sl(3,R) is
that these real symmetric matrices have real eigenvalues; at the Lie algebra level, their real
eigenvectors will lie inside the algebra, without the need for complexification.

Explicitly, we have the commutation relations

[λ3, λ8] = 0,
[

λ3,
1

2
(λ1 ∓ µ2)

]

= ±2

2
(λ1 ∓ µ2),

[

λ8,
1

2
(λ1 ∓ µ2)

]

= 0,

[

λ3,
1

2
(λ4 ∓ µ5)

]

= ∓1

2
(λ4 ∓ µ5),

[

λ8,
1

2
(λ4 ∓ µ5)

]

= ∓
√
3

2
(λ4 ∓ µ5),

[

λ3,
1

2
(λ6 ∓ µ7)

]

= ∓1

2
(λ6 ∓ µ7),

[

λ8,
1

2
(λ6 ∓ µ7)

]

= ±
√
3

2
(λ6 ∓ µ7). (149)

Regarding the eigenvalues as vectors in R
2, we can identify our basis elements with their

eigenvalues, as follows:

1

2
(λ1 ∓ µ2)←→ (±2, 0),

1

2
(λ4 ∓ µ6)←→ (∓1,∓3),

1

2
(λ6 ∓ µ7)←→ (∓1,±3), (150)

and both λ3 and λ8 correspond to (0, 0). As with su(2), we recover almost all of the structure
of the Lie algebra by plotting these points. The result is shown in Figure 2, and is called the
root diagram of su(3). Each family of parallel lines represents the action of one of the three
pairs of eigenvectors on the other eigenvectors; again, the eigenvectors can be thought of as
raising and lowering operators. It is a useful exercise to work out all the commutators, and
to compare the result with the root diagram.
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