
5 Lie Groups and Lie Algebras

Lie Groups

Now that we have studied several examples of Lie groups, it’s time for a definition. A Lie

group is a group G that is also a smooth manifold. In other words, one can use coordinates
to describe the group elements, and one can differentiate with respect to these coordinates.
Furthermore, these structures must be compatible, in the sense that the group operations

(P,Q) 7−→ PQ,

P 7−→ P−1,

are smooth maps on G.
We are interested here only in the structure of Lie groups near the identity element.

We will therefore usually assume that a Lie group is connected, or equivalently that we are
studying the component connected to the identity. All Lie groups can be regarded locally as
matrix groups, which we will usually do.

A representation of a Lie group G on a vector space V is a group homomorphism

ρ : G −→ End(V ) (97)

that takes elements of G to linear maps on V . Thus, a representation of G is an explicit iden-
tification of G with certain matrices acting on V . For this reason, the term “representation”
is often used to refer to the matrices ρ(G), and occasionally used to refer to V .

Lie Algebras I

The simplest definition of a Lie algebra is that it is the tangent space at the identity of a Lie
group. This tangent space is a real vector space; thus, Lie algebras are vector spaces. Since
Lie groups are locally matrix groups, we can always regard the elements of Lie algebras as
matrices. However, all we have so far is the vector space structure, which allows us to add,
but not (yet) multiply, Lie algebra elements.

From this point of view, a representation of a Lie algebra on a vector space is simply the
result of differentiating a representation of the corresponding Lie group.

Matrix Exponentiation

Given a curve through the identity element of a Lie group, the corresponding Lie algebra
element is just the tangent vector to this curve at the identity. How do we go the other way?

The key idea is that there are nice curves through the origin, called 1-parameter families

of group elements, with the property that

M :R −→ G, (98)

M(0) = 1, (99)

M(α + β) = M(α)M(β). (100)
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In other words, γ is a group homorphism from the additive group of the real numbers into
G. Such curves are in 1–1 correspondence with the tangent vectors at the identity. Given
a tangent vector A ∈ g, how do we find the 1-parameter family M(α) that goes through it,
that is, that satisfies

A = Ṁ = M ′(0)? (101)

Differentiating (100) and using (99) yields the differential equation

M ′(α) = M(α)A (102)

whose solution is
M(α) = exp(Aα). (103)

But what does it mean to exponentiate a matrix?
We can define matrix exponentials as a power series, so that

exp(Aα) = 1 + Aα +
1

2
A2α2 +

1

6
A3α3 + ... (104)

which turns out to converge for any A. An important special case is when A2 = −1, in which
case the series splits into two sums, only one of which involves A. Explicitly, we have

A2 = −1 =⇒ exp(Aα) = cosα + A sinα (105)

where there is of course an implicit identity matrix in the first term. If instead A2 = 1, only
the signs change, and we have

A2 = +1 =⇒ exp(Aα) = coshα + A sinhα. (106)

Finally, if A2 = 0, we have

A2 = 0 =⇒ exp(Aα) = 1 + Aα. (107)

In practice, even if A itself does not satisfy any of these conditions, it can usually be broken
up into blocks that do.

Lie Algebras II

Consider the action of G on itself defined by

P 7−→ MPM−1,

where M,P ∈ G. If P = P (β) is a 1-parameter family, then we can differentiate this action
with respect to the parameter, resulting in an action of M on Ṗ = P ′(0). Thus, there is an
action of G on its Lie algebra g, given by

X 7−→ MXM−1,
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where now X ∈ g. If we now think of M = M(α) in turn as a 1-parameter family, we can
again differentiate, obtaining an action of g on itself. But

d

dα
M(α)XM(α)−1 =

dM

dα
XM(α)−1 −M(α)XM(α)−2

dM

dα
(108)

so that
(

M(α)XM(α)−1
)•

= AX −XA = [A,X] (109)

where we have used (101). Thus, a Lie algebra always acts on itself by commutators. 3

We can use this structure to define Lie algebras directly, without starting with a Lie
group. A Lie algebra is a vector space V , together with an operation

V × V −→ V

(X, Y ) 7−→ [X, Y ]

where the Lie bracket [X, Y ] is bilinear, antisymmetric, and satisfies the Jacobi identity

[

X, [Y, Z]
]

+
[

Y, [Z,X]
]

+
[

Z, [X, Y ]
]

= 0 (110)

(which is identically true for matrices).
A representation of a Lie algebra g on a vector space V is a therefore a Lie algebra

homomorphism
ρ : g −→ End(V ) (111)

that takes elements of g to linear maps on V . A representation of g is again an explicit
identification of g with certain matrices acting on V , but in this case the homomorphism
preserves commutators. As with Lie groups, the term “representation” is often used to refer
to the matrices ρ(g), and occasionally used to refer to V .

3Strictly speaking, we have constructed the commutator as the derivative of a curve in the Lie algebra,

so it properly lives in the tangent space to the Lie algebra. However, vector spaces are their own tangent

spaces, so the result can be regarded as an element of the Lie algebra itself.
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6 SU(2,C′)

Representations

By analogy with SU(2), we have

SU(2,C′) = {M ∈ C
′2×2 : M †M = 1, |M | = 1}. (112)

As with SU(2), we expect there to be 3 degrees of freedom.
Our old friend M(φ) ∈ SO(2) is again in SU(2,C′), but we give it yet another new name,

writing

Ty(α) =

(

cosα − sinα
sinα cosα

)

. (113)

Other elements are

Tx(α) =

(

coshα L sinhα
L sinhα coshα

)

, Tz(α) =

(

eLα 0
0 e−Lα

)

. (114)

Derivatives

We know what to do next: Differentiate! So consider

ty = Ṫy = T ′
y(0) =

(

0 −1
1 0

)

, (115)

tx = Ṫx = T ′
x(0) =

(

0 L

L 0

)

, (116)

tz = Ṫz = T ′
z(0) =

(

L 0
0 −L

)

. (117)

These matrices are linearly independent, and therefore span the tangent space at the identity.
Let’s compute the commutators. The result is

[tx, ty] = 2tz, [ty, tz] = 2tx, [tz, tx] = −2ty. (118)

These commutators are almost, but not quite, those of su(2) = su(2,C). However, complex-
ifying su(2,C′) would yield the same algebra as complexifying su(2,C); the signs wouldn’t
then matter, since they can be changed by multiplication with i. Thus, su(2,C′) must be a
real form of su(2). But which one?

Noting that ty = sy, tx = Lσx, and tz = Lσz shows that

su(2,C′) ∼= sl(2,R) ∼= so(2, 1) (119)

since the factors of L do not change the commutators. However, we can no longer use Her-
miticity to determine which elements are rotations, and which are boosts, since all elements
of su(2,C′) are anti-Hermitian.
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A more robust mechanism is provided by considering matrix squares. Recall that matrix
exponentiation yields ordinary trig functions for matrices that square to minus the identity,
and hyperbolic trig functions for matrices that square to the identity. Rotations correspond
to ordinary trig, with compact orbits; boosts correspond to hyperbolic trig, with noncompact
orbits. The correct generalization of this argument is provided by the Killing form

B(X, Y ) = tr (XY ), (120)

which yields a norm that is negative for rotations, and positive for boosts, that is

B(X,X) < 0 ⇐⇒ X is a rotation,

B(X,X) > 0 ⇐⇒ X is a boost. (121)

Using either the Killing form, or simply looking at the trig functions, we conclude that ty
is a rotation, but tx and tz are boosts. Comparison with sl(2,R) shows that the only difference
is that we have multiplied the boosts by L, changing their Hermiticity, but nothing else.

Comparison with SO(2, 1)

We can realize this identification explicitly by considering matrices of the form

Y =

(

−x z + Lt

z − Lt x

)

. (122)

The matrix Y is tracefree and Hermitian, and we can act on Y with SU(2,C′) via the action

Y 7−→ MYM † (123)

which preserves both of these conditions. Furthermore, we have

|Y | = −(x2 + z2 − t2), (124)

and, since |M | = 1,
|MYM †| = |Y | (125)

Thus, M can be identified with an element of SO(2, 1), and we have shown that

SU(2,C′) ∼= Spin(2, 1). (126)

Generalization to C
′ ⊗ C

Consider now the algebra C
′ ⊗ C. The tensor product of two algebras consists of linear

combinations of formal products. We could write (1, 1), (L, 1), (1, i) and (L, i) for these
products, then define operations by acting on each algebra separately. However, it is easier
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to drop the parentheses, effectively just multiplying these expressions out; the elements of
C

′ ⊗ C are linear combinations of 1, L, i, and iL. Since

(L, 1)(1, i) = (L, i) = (1, i)(L, 1) (127)

we have
iL = Li. (128)

As a vector space, C′⊗C is clearly isomorphic to R
4. But the multiplication table is different

from the other 4-dimensional algebras we have seen, H and H
′.

Conjugation in a tensor product algebra is defined by conjugating both elements, that is

(a, b) = (a, b). (129)

Thus, although
i = −i, L = −L, (130)

as usual, we have
iL = iL. (131)

So what is su(2,C′ ⊗C)? Reasoning by analogy with su(2,C′), it is clear that a basis for
su(2,C′ ⊗ C) is given by

{Lσx, Lσy, Lσz,−iσx,−iσx,−iσy}.

This basis is the same as the basis for sl(2,C) apart from the factors of L, which again
appear only in the boosts. These factors change the Hermiticity, but not the commutators,
so we conclude that

su(2,C′ ⊗ C) ∼= sl(2,C) ∼= so(3, 1). (132)

Thus, the use of C′ makes it easy to identify the boosts—they contain L—and allows
boosts to be represented using anti-Hermitian matrices.
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