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1 SO(2)

Representations

The rotation group in two Euclidean dimensions is known as SO(2). How many representa-
tions of this group can you think of?
The first representation of SO(2) we consider is in terms of 2 x 2 matrices, of the form

Mo = (Gn o). 1)

sing cos¢
The “O” in SO(2) stands for orthogonal. Orthogonal matrices satisfy
MT™M =1 (2)

where T denotes matrix transpose, and where we write simply 1 for the identity matrix
(rather than I, for which we will have another use). Such matrices preserve the (squared)
magnitude

[ =v"v (3)

of a vector v € R?, since
(Mv)' (Mv) = (vI MT)(Mv) = v"v. (4)
The “S” in SO(2) stands for special, and refers to the additional condition that
|M| = det(M) = 1. (5)

Orthogonal matrices M with |M| = 1 are rotations; if |M| = —1, the only other possibility,
they are reflections.
Our second representation of SO(2) is in terms of the complex numbers, of the form

w(e) = €. (6)
Such complex numbers have norm 1, that is
w(¢)]? =ww=1 (7)
and preserve the magnitude |z| of any complex number z € C, since
jwz| = |wl|z] = [2]. (8)

Sound familiar?

Our third representation of SO(2) is purely geometric. Rotations are rigid transforma-
tions of R?, obtained by, well, rotating the plane through a given angle ¢. In other words,
the rotations in SO(2) are in one-to-one correspondence with the angles in the (unit) circle,
that is, with the circle itself. Thus, SO(2) can be thought of as the circle S*.

Take a moment to compare and contrast these various representations of SO(2). What
are their properties?



Properties

The geometric representation makes clear that SO(2) is a group; the composition of two
rotations is another rotation. In matrix language, we have

M(a+ ) = M(a)M(5) (9)

and similarly
eilatB) — giaif (10>
for complex numbers. Setting o = 0 corresponds to the identity element, and setting f = —«

leads immediately to inverse elements.
Our two algebraic representations are clearly closely related. The identification of M (¢)
with e suggests the further identification

Tty <— .
y x
This identification seems even more reasonable after writing

(i‘f):x1+m2 (11)

where again 1 denotes the identity matrix, and

Notice that 92 = —1!
We note for future reference both that

Q = M'(0) (13)

and that
M(g) = % (14)

where matrix exponentiation is formally defined in terms of a power series (which always
converges).

Returning to our geometric representation, since SO(2) can be thought of as S!, it is a
smooth manifold, that is, it is a smooth 1-surface (i.e. a curve), on which one can introduce
coordinates (e.g. ¢). Thus, SO(2) is both a group and a manifold; it is our first example of
a Lie group.

In the language of vector calculus, we can introduce a vector field that is tangent to
St. One possible choice would be the unit vector tangent to the circle, often written ¢. In
the language of differential geometry, however, vector fields are interpreted as directional
derivative operators, so that

5(f)=3-V/. (15)
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Since

6 9r=12 (16)
we choose instead the tangent vector

ré=xg§-ya (17)
Equivalently, as differential operators we choose

Op =20y —y 0, (18)

where we have introduced the notation 9, for a%.

What do tangent vectors look like in the complex representation of SO(2)? Take the

derivative! We have
dw

%
What does this result mean geometrically?

Evaluate this derivative first at the identity element, where ¢ = 0. At the point z = 1,
this derivative is 7. But the i-direction is vertical; this direction is tangent to the circle
at z = 1. A similar argument works at any point on the circle; iw always represents the
direction rotated 7 counterclockwise from w—precisely the direction tangent to the circle.

Finally, consider the matrix representation of SO(2). Again, take the derivative, yielding

= jw = ie" (19)

_ ! _ O _]_
A—M(O)—(1 0). (20)
At other points on the circle, we have

M(a) = (_Siw —cos ¢) — M(a)A. (21)

cos¢p —sing

This relationship between the derivative of a path in the group at any point and its derivative
at the identity element is a hallmark of the study of Lie groups, and allows us to study such
groups by studying their derivatives at the identity element, a much simpler process.



