THE HODGE DUAL OPERATOR

Tevian Dray
Department of Mathematics, Oregon State University, Corvallis, OR 97331, USA
tevian@math.orst.edu

The Hodge dual operator * is one of the 3 basic operations on differential forms. (The other 2 are wedge product \wedge and exterior differentiation d.) However most treatments consider only positive-definite inner products, and there are at least 2 standard ways of generalizing this to inner products of arbitrary signature. We outline here a construction of the Hodge dual operator which works for any signature, resulting in a particular choice of signs. ${ }^{1}$

1. NOTATION

We assume throughout that V is an n-dimensional vector space with a non-degenerate inner product g, also called the (inverse) metric. We further assume that an ordered orthonormal basis $\left\{\sigma^{i} \in V, i=1, \ldots, n\right\}$ is given, so that

$$
\begin{equation*}
g^{i j}:=g\left(\sigma^{i}, \sigma^{j}\right)= \pm \delta^{i j} \tag{1}
\end{equation*}
$$

where $\delta^{i j}$ is the Kronecker delta symbol, which is 1 if $i=j$ and 0 otherwise. We define the signature s of g to be the number of - signs occurring on the right-hand-side of this equation. ${ }^{2}$

The spaces $\Lambda^{p} V$ of p-vectors are constructed as usual using the wedge product \wedge. In particular, we have

$$
\begin{equation*}
\bigwedge^{0} V=\mathbb{R} \quad \bigwedge^{1} V=V \quad \bigwedge^{p} V=\{0\} \quad(p>n) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{dim}\left(\bigwedge^{p} V\right)=\binom{n}{p}=\frac{n!}{p!(n-p)!} \tag{3}
\end{equation*}
$$

The ordered basis determines an orientation by selecting a preferred n-vector, namely

$$
\begin{equation*}
\omega=\sigma^{1} \wedge \sigma^{2} \wedge \ldots \wedge \sigma^{n} \in \bigwedge^{n} V \tag{4}
\end{equation*}
$$

[^0]A basis of $\bigwedge^{p} V$ is given by $\left\{\sigma^{I}\right\}$, where

$$
\begin{equation*}
\sigma^{I}=\sigma^{i_{1}} \wedge \ldots \wedge \sigma^{i_{p}} \tag{5}
\end{equation*}
$$

where the indices are assumed to satisfy $1 \leq i_{1}<\ldots<i_{p} \leq n$. The label $I=\left\{i_{k}, k=1, \ldots, p\right\}$ is called the index set; the basis of $\bigwedge^{p} V$ consists of all σ^{I} as I ranges over the allowed index sets (of length p).

A p-vector $\alpha \in \bigwedge^{p} V$ is called decomposable if and only if there exist vectors $\alpha^{i} \in V$ with

$$
\begin{equation*}
\alpha=\alpha^{1} \wedge \ldots \wedge \alpha^{p} \tag{6}
\end{equation*}
$$

The inner product can be extended to $\Lambda^{0} V$ via $g(1,1)=1$, and to $\Lambda^{p} V$ by requiring that

$$
\begin{equation*}
g(\alpha, \beta)=\operatorname{det}\left(g\left(\alpha^{i}, \beta^{j}\right)\right) \tag{7}
\end{equation*}
$$

for any decomposable p-vectors α and β. Equivalently,

$$
\begin{equation*}
g\left(\sigma^{I}, \sigma^{J}\right)=\left(\prod_{k=1}^{p} g\left(\sigma^{i_{k}}, \sigma^{i_{k}}\right)\right) \delta^{I J}= \pm \delta^{I J} \tag{8}
\end{equation*}
$$

so that the σ^{I} are in fact an orthonormal basis for $\Lambda^{p} V$. (Note that the same symbol g is used for the different inner products in the different vector spaces $\wedge^{p} V$). In particular, we have

$$
\begin{equation*}
g(\omega, \omega)=\prod_{k=1}^{n} g\left(\sigma^{i}, \sigma^{i}\right)=(-1)^{s} \tag{9}
\end{equation*}
$$

so that the norm of the preferred n-vector is determined by the signature.

2. ABSTRACT DEFINITION

We start with an important lemma.
Lemma: Given any real-valued linear function f on a vector space W with (nondegenerate) inner product g, there exists a unique element $\beta \in W$ such that

$$
f(\alpha)=g(\alpha, \beta) \quad \forall \alpha \in W
$$

Proof: To prove this, simply expand α and β in terms of the basis. From linearity, we must have $f\left(\sigma^{i}\right)=g\left(\sigma^{i}, \beta\right)$, and since the basis is orthonormal we obtain

$$
\beta=\sum_{i} g\left(\sigma^{i}, \sigma^{i}\right) f\left(\sigma^{i}\right) \sigma^{i}
$$

It is important to realize that this lemma applies to any vector space; we will now apply it to $\wedge^{n-p} V$.

Fix a p-vector $\lambda \in \Lambda^{p} V$. For any $\theta \in \Lambda^{n-p} V, \lambda \wedge \theta$ is an n-vector. But all n-vectors are multiples of ω, and we can define a function f_{λ} via

$$
\begin{equation*}
\lambda \wedge \theta=f_{\lambda}(\theta) \omega \tag{10}
\end{equation*}
$$

With this definition, f_{λ} is clearly a linear function on $\Lambda^{n-p} V$. Therefore, the lemma tells us that there is a unique element $\phi \in \Lambda^{n-p} V$ such that

$$
\begin{equation*}
f_{\lambda}(\theta)=g(\theta, \phi) \quad \forall \theta \in \bigwedge^{n-p} V \tag{11}
\end{equation*}
$$

We finally define the Hodge dual $* \lambda$ of λ to be ${ }^{3}$

$$
\begin{equation*}
* \lambda=(-1)^{s} \phi \in \bigwedge^{n-p} V \tag{12}
\end{equation*}
$$

Equivalently, the Hodge dual of a p-vector λ is the $(n-p)$-vector defined by

$$
\begin{equation*}
\lambda \wedge \theta=(-1)^{s} g(\theta, * \lambda) \omega \quad \forall \theta \in \bigwedge^{n-p} V \tag{13}
\end{equation*}
$$

(This definition makes sense because of the lemma.)

3. PRACTICAL DEFINITION

Since the $*$ operator is linear, it is enough to compute it in a basis. We will use our orthonormal bases $\left\{\sigma^{I}\right\}$ for each of the vector spaces $\Lambda^{p} V$. Furthermore, we can always permute the basis without changing the orientation ω, so long as we restrict ourselves to even permutations. But any $\left\{\sigma^{I}\right\}$ can be brought to the form $\sigma^{1} \wedge \ldots \wedge \sigma^{p}$ by an even permutation. ${ }^{4}$ It is therefore sufficient to determine $* \lambda$ for the basis p-vector

$$
\begin{equation*}
\lambda=\sigma^{1} \wedge \ldots \wedge \sigma^{p} \tag{14}
\end{equation*}
$$

Using the boxed definition above, we obtain for any basis $(n-p)$-vector $\sigma^{J} \in \wedge^{n-p} V$

$$
\begin{equation*}
\lambda \wedge \sigma^{J}=(-1)^{s} g\left(\sigma^{J}, * \lambda\right) \omega \tag{15}
\end{equation*}
$$

But the LHS of this equation is clearly 0 unless $J=\{p+1, \ldots, n\}$. Since the σ^{J},s are themselves orthonormal, the RHS then tells us that $* \lambda$ only has a σ^{J} component for J as given above, or in other words that

$$
\begin{equation*}
* \lambda=c \sigma^{p+1} \wedge \ldots \wedge \sigma^{n} \tag{16}
\end{equation*}
$$

for some real number c. But for this value of J

$$
\begin{equation*}
\lambda \wedge \sigma^{J}=\omega \tag{17}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
1=(-1)^{s} g\left(\sigma^{J}, c \sigma^{J}\right) \tag{18}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
c=\frac{(-1)^{s}}{g\left(\sigma^{J}, \sigma^{J}\right)}=\frac{g(\omega, \omega)}{g\left(\sigma^{J}, \sigma^{J}\right)}=g(\lambda, \lambda) \tag{19}
\end{equation*}
$$

Putting this all together, we obtain

$$
\begin{equation*}
*\left(\sigma^{1} \wedge \ldots \wedge \sigma^{p}\right)=g\left(\sigma^{1}, \sigma^{1}\right) \ldots g\left(\sigma^{p}, \sigma^{p}\right) \sigma^{p+1} \wedge \ldots \wedge \sigma^{n} \tag{20}
\end{equation*}
$$

[^1]
4. EXAMPLES

To see how this works in practice, consider first the case of ordinary Euclidean 2-space, that is $V=\mathbb{R}^{2}$ with a positive-definite inner product. For compatibility with later work, we will write the basis as $\{d x, d y\}$. The inner product can be conveniently expressed in terms of the metric or line element

$$
\begin{equation*}
d s^{2}=d x^{2}+d y^{2} \tag{21}
\end{equation*}
$$

which also encodes the fact that our basis is orthonormal. Since we are in the case of Euclidean (also called Riemannian) signature, namely $s=0$, all basis vectors have norm +1 , so that the g 's can be omitted from the formula at the end of the last section. Choosing our preferred 2 -vector to be ${ }^{5}$

$$
\begin{equation*}
\omega=d x \wedge d y=d y \wedge(-d x) \tag{22}
\end{equation*}
$$

we obtain

$$
\begin{align*}
* 1 & =d x \wedge d y \\
* d x & =d y \\
* d y & =-d x \tag{23}\\
*(d x \wedge d y) & =1
\end{align*}
$$

Another example is the case $V=\mathbb{R}^{3}$ with Lorentzian signature, namely $s=1$, which is called Minkowski 3 -space. The metric is

$$
\begin{equation*}
d s^{2}=d x^{2}+d y^{2}-d t^{2} \tag{24}
\end{equation*}
$$

corresponding to the orthonormal basis $\{d x, d y, d t\}$. Note that

$$
\begin{equation*}
g(d t, d t)=-1 \tag{25}
\end{equation*}
$$

We take the preferred 3 -form, or volume element, to be

$$
\begin{equation*}
\omega=d x \wedge d y \wedge d t=d y \wedge d t \wedge d x=d t \wedge d x \wedge d y \tag{26}
\end{equation*}
$$

which leads to

$$
\begin{align*}
* 1 & =d x \wedge d y \wedge d t \\
* d x & =d y \wedge d t \\
* d y & =d t \wedge d x \\
* d t & =-d x \wedge d y \tag{27}\\
*(d x \wedge d y) & =d t \\
*(d y \wedge d t) & =-d x \\
*(d t \wedge d x) & =-d y \\
*(d x \wedge d y \wedge d t) & =-1
\end{align*}
$$

Unlike the previous example, the minus signs here arise exclusively due to the presence of $d t$, whose "squared norm" is negative. (This would not be true had we failed to use a "cyclic" basis for 2-vectors.)

[^2]
5. PROPERTIES

We now derive some useful properties of the $*$ operator.
First of all, with $I=\{1, \ldots, p\}$ and $J=\{p+1 \ldots n\}$ as above, what is $* \sigma^{J}$? We have

$$
\begin{align*}
\sigma^{I} & =\sigma^{1} \wedge \ldots \wedge \sigma^{p} \\
\sigma^{J} & =\sigma^{p+1} \wedge \ldots \wedge \sigma^{n} \tag{28}
\end{align*}
$$

The practical definition (20) of the Hodge dual is just

$$
\begin{equation*}
* \sigma^{I}=g\left(\sigma^{I}, \sigma^{I}\right) \sigma^{J} \tag{29}
\end{equation*}
$$

which follows from the abstract definition (13) since $\sigma^{I} \wedge \sigma^{J}=\omega$. Two special cases deserve mention, namely 0 -vectors and n-vectors, for which we have

$$
\begin{array}{|c|}
* 1=\omega \\
* \omega=(-1)^{s} \tag{30}
\end{array}
$$

in all cases.
In words, the dual of an (orthonormal) basis p-vector is the $n-p$-vector obtained by "wedging" together (in a particular order) all the basis 1-vectors not appearing in the given p-vector, then multiplying by the norm of that p-vector. The "particular order" is such that the product of the p-vector with the remaining 1 -vectors is just the preferred n-vector ω; if the order is wrong, it can be corrected either by interchanging any two 1 -vectors, or by multiplying by -1 .

We use this description in order to determine $* \sigma^{J}$. This will clearly be some multiple of σ^{I}, but what multiple? But

$$
\begin{equation*}
\sigma^{J} \wedge \sigma^{I}=(-1)^{p(n-p)} \sigma^{I} \wedge \sigma^{J}=(-1)^{p(n-p)} \omega \tag{31}
\end{equation*}
$$

or in other words

$$
\begin{equation*}
\sigma^{J} \wedge\left((-1)^{p(n-p)} \sigma^{I}\right)=\omega \tag{32}
\end{equation*}
$$

from which it finally follows that

$$
\begin{equation*}
* \sigma^{J}=g\left(\sigma^{J}, \sigma^{J}\right)\left((-1)^{p(n-p)} \sigma^{I}\right) \tag{33}
\end{equation*}
$$

This in turn allows us to work out $* * \sigma^{I}$:

$$
\begin{align*}
* * \sigma^{I} & =*\left(g\left(\sigma^{I}, \sigma^{I}\right) \sigma^{J}\right)=g\left(\sigma^{I}, \sigma^{I}\right) * \sigma^{J} \\
& =g\left(\sigma^{I}, \sigma^{I}\right) g\left(\sigma^{J}, \sigma^{J}\right)(-1)^{p(n-p)} \sigma^{I}=(-1)^{p(n-p)+s} \sigma^{I} \tag{34}
\end{align*}
$$

since

$$
\begin{equation*}
g\left(\sigma^{I}, \sigma^{I}\right) g\left(\sigma^{J}, \sigma^{J}\right)=g(\omega, \omega)=(-1)^{s} \tag{35}
\end{equation*}
$$

The formula for the double dual is most easily remembered as

$$
\begin{equation*}
\text { ** }=(-1)^{p(n-p)+s} \tag{36}
\end{equation*}
$$

The double dual can in turn be used to compute one of the most important properties of the $*$ operator. Applying the abstract definition (13) to the $n-p$-vector $* \beta$ leads to

$$
\begin{equation*}
* \beta \wedge \alpha=(-1)^{s} g(\alpha, * * \beta) \omega \tag{37}
\end{equation*}
$$

for any p-vector α. Evaluating the double dual on the right, and commuting the vectors on the left causes all the minus signs to go away, and we are left with

$$
\begin{equation*}
\alpha \wedge * \beta=g(\alpha, \beta) \omega \tag{38}
\end{equation*}
$$

which holds for any two p-vectors α and β. It is to ensure the validity of this identity that we inserted the factor of $(-1)^{s}$ in the original definition. In fact, many authors take (38) as the definition of the $*$ operator, although this requires some checking to make sure it is well-defined.

Finally, we can turn (38) around and express the inner product g entirely in terms of *, thus showing that these two concepts are equivalent. Explicitly, we have

$$
\begin{equation*}
g(\alpha, \beta)=(-1)^{s} *(\alpha \wedge * \beta) \tag{39}
\end{equation*}
$$

where we have used (30). In Euclidean 3-space, this yields a formula for the ordinary "dot" product. (Try it!)

[^0]: ${ }^{1}$ Our treatment parallels that in Flanders, which however uses the opposite convention. Bishop \& Goldberg only considers the positive-definite case, for which all 3 treatments agree.
 ${ }^{2}$ This is nonstandard, as it is customary to define the signature as the difference between the number of + and - signs.

[^1]: ${ }^{3}$ The definition in Flanders is equivalent to omitting the factor of $(-1)^{s}$. One suspects that Bishop \& Goldberg would have omitted this factor as well, but he only considers positive-definite inner products, for which $s=0$.
 ${ }^{4}$ If $p=n-1$, only one of $\pm \sigma^{I}$ can be brought to this form by an even permutation. But $* \sigma^{I}$ can trivially be computed from $*\left(-\sigma^{I}\right)$ if necessary.

[^2]: ${ }^{5}$ It is only for 1 -vectors in 2 dimensions that the minus sign in ω can not be eliminated by an appropriate ordering of the basis. An alternative in this case is to write $\omega=(-d y) \wedge d x$ and $*(-d y)=d x$.

