
CURVATURE AND ALL THAT
Everything you ever wanted to know about curvature — and then some...

1. INTRODUCTION

This is a very concise summary of the basic idea of curvature, intended for those study-
ing general relativity. Along the way, we encounter covariant differentiation and affine con-
nections in considerable generality, and then discusses how to compute curvature in two
important special cases, namely using a coordinate basis and using an orthonormal basis.
The latter method requires familiarity with differential forms; the former does not.

Please bear in mind when reading this document that it is not necessary to follow the
details of each and every step. Rather, it is important to have a basic grasp of what is going
on, and to be able to calculate curvature using any one method.

2. THEORY

a) Curvature and Torsion

Pick any basis
{

σi
}

of 1-forms, not necessarily orthonormal. Choose any 1-forms ωi
j

to be the connection 1-forms. Then the torsion 2-forms Θk and the curvature 2-forms Ωi
j

are defined by the Cartan structure equations

Θk = dσk + ωk
i ∧ σi

Ωi
j = dωi

j + ωi
m ∧ ωm

j

Expanding with respect to our basis, we can write

ωk
i =: Γ k

ij σj

Θk =:
1

2
T k

ij σi ∧ σj

Ωi
j =:

1

2
Ri

jkl σ
k ∧ σl

The latter 2 expressions correspond to a
(

1
2

)

tensor called the torsion tensor, whose com-

ponents are T k
ij , and a

(

1
3

)

tensor called the Riemann curvature tensor, whose components

are Ri
jkl. The “connection components” Γ k

ij are called Christoffel symbols, and are not the
components of a tensor. In particular, they can all be 0 in one basis but not in another,
which is not possible for tensor components.

Two contractions of the Riemann tensor are important in relativity. These are the Ricci

tensor, whose components are defined by Rij = Rm
imj , and the Ricci scalar, which is the

“trace” of the Ricci tensor, defined by R = gijRij , where gij denotes the (components of
the) inverse of the metric tensor, which is discussed further below.
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b) Covariant Differentiation

We are looking for a derivative operator ∇X which takes tensors to tensors of the same
rank. It should have at least the following properties (we will add more later):

∇X(f) = X(f)

∇X+hY T = ∇XT + h∇Y T

∇X(S + T ) = ∇XS + ∇XT

∇X(S ⊗ T ) = (∇XS) ⊗ T + S ⊗ (∇XT )

∇X

(

α(Y )
)

=
(

∇Xα
)

(Y ) + α
(

∇X(Y )
)

The first of these says that covariant differentiation should reduce to ordinary differentiation
when applied to functions, the next two are linearity requirements, the fourth is the usual
product rule, and the last says that a “contraction” 1 can be done either before or after
taking the derivative.

As outlined below, it is fairly easy to see that covariant differentiation is completely
determined by its action on a basis. So let {ei} denote the basis of vector fields which is

dual to the given basis
{

σi
}

of 1-forms. Given a choice of connection 1-forms, defining

∇ej
ei := ωk

i(ej) ek

leads to a unique covariant differentiation operator satisfying the above requirements. Con-
versely, any such operator determines connection 1-forms via this equation. Thus, choosing
a derivative operator is completely equivalent to choosing connection 1-forms.

To see that knowing the derivative of vector fields is enough, consider a 1-form α. The
above requirements determine the derivative of α by computing

X
(

α(Y )
)

= ∇X

(

α(Y )
)

=
(

∇Xα
)

(Y ) + α
(

∇X(Y )
)

for any vector fields X, Y . Inserting a basis 1-form for α, we obtain

∇ej
σk = −ωk

i(ej) σi

These formulas can be used to differentiate any tensor, by expanding with respect to
an explicit basis and using the product rule. An explicit example is given by

∇XY =
(

X(Y k) + ωk
i(X)Y i

)

ek

where Y k = σk(Y ). Thus, the components of ∇XY are given by

XjY k
;j := Xj

(

Y k
,j + Γ k

ijY
i
)

Note the conventional use of a comma to denote partial differentiation, that is f,i := ei(f),
and the corresponding use of a semicolon to denote covariant differentiation. Similarly, the
components of ∇Xα are

Xjαi;j := Xj
(

αi,j − Γ k
ijαk

)

In general, the derivative of a
(

p
q

)

tensor will contain p + q “correction terms” involving

the connection ωk
i (or equivalently Γ k

ij), with appropriate signs.

1 A contraction turns the
(

1
1

)

tensor α ⊗ X with components αµXν into the function α(X) = αµXµ.
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c) The Torsion and Curvature, Revisited

Given a covariant derivative operator ∇, or equivalently given connection 1-forms ωi
j ,

the torsion tensor T is defined by

T (X,Y ) = ∇XY −∇Y X − [X,Y ]

and the Riemann curvature tensor R is defined by

R(X,Y ) Z = (∇X∇Y −∇Y ∇X −∇[X,Y ]) Z

(It takes some work to show that these expressions in fact define tensors — the trick is to
show that they are suitably multilinear.) In both cases, [X,Y ] denotes the Lie bracket or
commutator of X and Y , which is the vector field defined by

[X,Y ](f) = X
(

Y (f)
)

− Y
(

X(f)
)

Using these definitions, one can work out the components of these tensors in a given
basis in terms of the Christoffel symbols, obtaining (after some work!)

T k
ij ek := T (ei, ej) = −

(

Γ k
ij − Γ k

ji

)

ek − [ei, ej ]

and

Ri
jkl := σi

(

R(ek, el)ej

)

= ek

(

Γ i
jl

)

− el

(

Γ i
jk

)

+ Γ i
mkΓ

m
jl − Γ i

mlΓ
m

jk − Γ i
jm[ek, el]

m

Using these expressions, as well as the important identity

2 dα(X,Y ) = X
(

α(Y )
)

− Y
(

α(X)
)

− α
(

[X,Y ]
)

for any 1-form α and vector fields X, Y , one can further verify (again after some work!) that
the components T k

ij and Ri
jkl agree with those defined above using differential forms! 2

d) Bianchi Identities

Taking the exterior derivative of the structure equations leads to the Bianchi Identities 3

dΘk − ωk
i ∧ Θi = Ωk

i ∧ σi

dΩi
j − Ωi

m ∧ ωm
j + ωi

m ∧ Ωm
j = 0

These identities can be expressed in terms of components as
(

T i
jk;l + T i

mjT
m

kl

)

σj ∧ σk ∧ σl = Ri
jkl σj ∧ σk ∧ σl

(

Ri
jkl;m + Ri

jnkT
n

lm

)

σk ∧ σl ∧ σm = 0

If the torsion vanishes, the Bianchi identities take their standard form, namely

Ri
jkl + Ri

klj + Ri
ljk = 0

Ri
jkl;m + Ri

jlm;k + Ri
jmk;l = 0

2 It is logically cleaner to proceed in this direction, rather than the other way around, since the ear-
lier expressions must be assumed to be antisymmetric in their final 2 indices, albeit without loss of
generality.

3 The structure equations can also be written as Θk = Dσk and Ωi
j = Dωi

j in terms of the covariant

exterior derivative D, which leads to the Bianchi identities in the form DΘk = Ωk
i ∧σi and DΩi

j = 0.
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e) The Metric Connection

Again, this section outlines how to calculate an important result, the details of which

can be skipped on first reading.

We now assume the existence of a metric tensor and impose 2 additional, desirable
properties on the connection, namely that it be torsion-free and metric compatible, and show
that there is a unique connection with these properties, called the Levi-Civita connection.

The vanishing of the torsion tells us that

[ei, ej ] +
(

Γ k
ij − Γ k

ji

)

ek = 0

or equivalently that
g([ei, ej ], ek) + ωki(ej) − ωkj(ei) = 0

where we have introduced the notation ωkj := gki ω
k
j , and where gki = g(ek, ei) are the

components of the metric tensor.

Metric-compatibility says that the covariant derivative of the metric tensor should van-
ish, that is ∇Xg = 0. Using the contraction property in the definition of covariant differen-
tiation, we have

X
(

g(Y, Z)
)

= ∇X

(

g(Y, Z)
)

= (∇Xg)(Y, Z) + g(∇XY, Z) + g(Y,∇XZ)

= 0 + g(∇XY, Z) + g(Y,∇XZ)

Inserting basis vectors for X, Y , Z leads to

ek(glm) = g(∇ek
el, em) + g(el,∇ek

em)

= g(ωn
l(ek)en, em) + g(el, ω

n
m(ek)en)

= gmnωn
l(ek) + glnωn

m(ek)

= ωml(ek) + ωlm(ek)

Taking a nonobvious combination of such terms, we obtain

ek(glm) + em(glk) − el(gkm) = ωml(ek) + ωkl(em) − ωmk(el)

+ ωlm(ek) + ωlk(em) − ωkm(el)

= 2 ωlm(ek) − g(ek, [el, em]) − g(em, [el, ek]) − g(el, [em, ek])

where the last step involves clever pairing of the terms and repeated use of the fact that
the torsion vanishes. Solving for ωlm, we obtain the Koszul formula for the Levi-Civita
connection, namely

2 ωlm(ek) = ek(glm) + em(glk) − el(gkm)

+ g(ek, [el, em]) + g(em, [el, ek]) − g(el, [ek, em])
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3. PRACTICE

a) Coordinate Basis

In a coordinate basis {dxµ}, several simplifications take place. First of all, the dual basis
consists of “pure” partial derivative operators (with no coefficients), which means further
that the commutator of any dual basis vector fields vanishes, since mixed partial derivatives
can be taken in any order. In addition, since each basis 1-form is exact, its exterior derivative
vanishes.

Starting with the connection, we have

ωκ
µ = Γ κ

µν dxν

Note that Γ κ
µν = Γ κ

νµ, since the torsion vanishes, and the Koszul formula yields

2 Γκµν = gκµ,ν + gκν,µ − gνµ,κ

where Γκµν = gκλΓ λ
µν and where commas denote partial differentiation, namely f,µ = ∂f

∂xµ .
This is usually written in the form

Γ κ
µν =

1

2
gκλ (gκµ,ν + gκν,µ − gνµ,κ)

in terms of the inverse metric gκλ, which satisfies gκλgλµ = δκ
µ.

The curvature can be obtained either from the general formula above or by computing
the curvature 2-form. In either case, one obtains

Rµ
νκλ = Γµ

νλ,κ − Γµ
νκ,λ + Γµ

ρκΓ ρ
νλ − Γµ

ρλΓ ρ
νκ

b) Orthonormal Basis

Now consider the case of an orthonormal basis {ei}, that is, one which satisfies g(ei, ej) =
±δij . Since the metric components are constant, their partial derivatives vanish. The Koszul
formula yields for the connection

2 ωlm(ek) = g(ek, [el, em]) + g(em, [el, ek]) − g(el, [ek, em])

However, this is not usually the simplest approach.

The Koszul formula guarantees us a unique torsion free, metric compatible connection.
Thus, there is a unique solution of the first Cartan structure equation with vanishing torsion,
which also satisfies the metric compatibility condition, which now reads

ek(glm) = 0 = ωml(ek) + ωlm(ek)

or simply ωml + ωlm = 0. In practice, it is often easiest to solve the equations 4

dσk + ωk
i ∧ σi = 0

subject to the condition
ωji = −ωij

Feel free to guess a solution — if it works, you’re done! The curvature is then easily calculated
from the remaining structure equation

Ri
jkl σ

k ∧ σl = dωi
j + ωi

m ∧ ωm
j

4 Note the position of the indices! Care must be taken in Lorentzian signature.
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4. TENSOR-VALUED FORMS

There is an elegant way to generalize the exterior derivative from differential forms to
tensors of all types. This is done by first considering “tensor-valued” differential forms,
whose “components” are tensors. A good example is the vector-valued 1-form 5

dP = ei ⊗ σi

which is really a
(

1
1

)

tensor (the identity matrix!). Working by analogy with

df(X) = ∇Xf

for functions f and vector fields Y , we require

dY (X) = ∇XY

Comparing this with the formula on the second page, namely

∇XY =
(

X(Y k) + ωk
i(X)Y i

)

ek =
[(

dY k + Y iωk
i

)

(X)
]

ek

we are led to require
dei := ek ⊗ ωk

i

so that
d(Y iei) = d(eiY

i) = ei ⊗ dY i + dei ⊗ Y i = ek ⊗
(

dY k + ωk
iY

i
)

It is now possible to take covariant derivatives of all tensors simply by applying this gener-
alized exterior derivative d! Don’t forget the product rule for d, which means in particular
that

d(S ⊗ α) = dS ∧ α + S ⊗ dα

for tensors S and forms α.

Two computations are particularly nice in this formalism. First of all,

d2P := d(dP) = dei ∧ σi + ek ⊗ dσk

= ek ⊗ ωk
i ∧ σi + ek ⊗

(

Θk − ωk
i ∧ σi

)

= ek ⊗ Θk

In particular, the condition that the torsion vanish is just the statement that d2P = 0.
Similarly, considering an arbitrary vector field Y , we have

d2Y = d(dY ) = d
(

ek ⊗
(

dY k + ωk
jY

j
))

= dek ∧
(

dY k + ωk
jY

j
)

+ ei ⊗ d
(

dY i + Y jωi
j

)

= ei ⊗ ωi
k ∧

(

dY j + Y jωk
j

)

+ ei ⊗
(

0 + dY j ∧ ωi
j + Y jdωi

j

)

= ei ⊗
(

dωi
j + ωi

k ∧ ωk
j

)

Y j = ei ⊗ Ωi
jY

j

so that d2 acting on vectors gives the curvature.

5 The “d” in dP should be thought of as part of the name, although it can be motivated by considering
d~r = ı̂ dx + ̂ dy in rectangular coordinates in Euclidean R

2.
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