MTH 674

HW #5

- 1. Find a *p*-form $\alpha \in \bigwedge^p V$ for some vector space V satisfying $\alpha \land \alpha \neq 0$.
- 2. A *p*-form $\alpha \in \bigwedge^p V$ is called *decomposable* if and only if there exist 1-forms α^i such that

$$\alpha = \alpha^1 \wedge \ldots \wedge \alpha^p$$

- (a) If $\dim(V) = 3$, show that all 2-forms are decomposable.
- (b) If $\dim(V) = 4$, show that all 3-forms are decomposable.

(c) **EXTRA CREDIT:**

Show that all (n-1)-forms on an *n*-dimensional vector space are decomposable.