1. Find a p-form $\alpha \in \wedge^{p} V$ for some vector space V satisfying $\alpha \wedge \alpha \neq 0$.
2. A p-form $\alpha \in \Lambda^{p} V$ is called decomposable if and only if there exist 1 -forms α^{i} such that

$$
\alpha=\alpha^{1} \wedge \ldots \wedge \alpha^{p}
$$

(a) If $\operatorname{dim}(V)=3$, show that all 2-forms are decomposable.
(b) If $\operatorname{dim}(V)=4$, show that all 3-forms are decomposable.
(c) EXTRA CREDIT:

Show that all $(n-1)$-forms on an n-dimensional vector space are decomposable.

