- 1. Let $\{x,y\}$ and $\{r,\phi\}$ denote the usual rectangular and polar coordinate systems on \mathbb{R}^2 . Compute $dx \wedge dy$ in polar coordinates (using the corresponding coordinate basis for $\bigwedge^2 \mathbb{R}^2$).
- 2. Let $\{x,y\}$ be rectangular coordinates on \mathbb{R}^2 .
- (a) Find coordinates $\{u, v\}$ on \mathbb{R}^2 such that u = x but $\frac{\partial}{\partial u} \neq \frac{\partial}{\partial x}$.
- (b) Explicitly determine the relationship between the bases $\{\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\}$ and $\{\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\}$.
- (c) Explicitly determine the relationship between the bases $\{dx, dy\}$ and $\{du, dv\}$.