1. Let $\{x, y\}$ and $\{r, \phi\}$ denote the usual rectangular and polar coordinate systems on \mathbb{R}^{2}. Compute $d x \wedge d y$ in polar coordinates (using the corresponding coordinate basis for $\wedge^{2} \mathbb{R}^{2}$).
2. Let $\{x, y\}$ be rectangular coordinates on \mathbb{R}^{2}.
(a) Find coordinates $\{u, v\}$ on \mathbb{R}^{2} such that $u=x$ but $\frac{\partial}{\partial u} \neq \frac{\partial}{\partial x}$.
(b) Explicitly determine the relationship between the bases $\left\{\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right\}$ and $\left\{\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right\}$.
(c) Explicitly determine the relationship between the bases $\{d x, d y\}$ and $\{d u, d v\}$.
