1. Consider the group $S O(3)=S O(3, \mathbb{R})$ of real orthogonal 3×3 matrices, that is, real 3×3 matrices M satisfying $M M^{t}=I=M^{t} M$.
(a) Write down the 1-parameter subgroups $R_{i}(\phi)$ of $S O(3)$ corresponding to (counterclockwise) rotations by ϕ about the axes $x^{i}=x, y, z$.
(b) Find the generators X_{i} of the action of each of these subgroups. Your answers should be vector fields on \mathbb{R}^{3}.
(c) The commutator of vector fields is defined by

$$
[X, Y](f):=X(Y(f))-Y(X(f))
$$

Compute the commutators $\left[X_{i}, X_{j}\right]$.
(d) Compute the derivatives r_{i} of the matrices R_{i} at the identity matrix, that is, where the parameter is zero.
(e) Compute the matrix commutators $\left[r_{i}, r_{j}\right]$. The commutator of matrices is defined simply by $[A, B]=A B-B A$.
(f) Discuss your results.

