MTH 674

## HW #3

- 1. Consider the group  $SO(3) = SO(3, \mathbb{R})$  of real orthogonal  $3 \times 3$  matrices, that is, real  $3 \times 3$  matrices M satisfying  $MM^t = I = M^t M$ .
- (a) Write down the 1-parameter subgroups  $R_i(\phi)$  of SO(3) corresponding to (counterclockwise) rotations by  $\phi$  about the axes  $x^i = x, y, z$ .
- (b) Find the generators  $X_i$  of the action of each of these subgroups. Your answers should be vector fields on  $\mathbb{R}^3$ .
- (c) The *commutator* of vector fields is defined by

$$[X,Y](f) := X(Y(f)) - Y(X(f))$$

Compute the commutators  $[X_i, X_j]$ .

- (d) Compute the derivatives  $r_i$  of the matrices  $R_i$  at the identity matrix, that is, where the parameter is zero.
- (e) Compute the matrix commutators  $[r_i, r_j]$ . The commutator of matrices is defined simply by [A, B] = AB BA.
- (f) Discuss your results.