1. Acceleration (essentially a translation of problem 1.6.1 in B \& G)

Let $\alpha: \mathbb{R} \longmapsto M$ be a curve. Recall that for any function $f: M \longmapsto \mathbb{R}$ on M, we have:

$$
\left(\alpha_{*} \frac{d}{d u}\right)(f)=\frac{d}{d u}(f \circ \alpha)
$$

The vector $\alpha_{*} \frac{d}{d u} \in T M$ can be thought of as the velocity of the curve α.
(a) Suppose now that at a particular point $\alpha(0)=p \in M$ the velocity vanishes, that is

$$
\alpha_{*} \frac{d}{d u}=0 \in T_{p} M
$$

Show that the acceleration of the curve α, defined by

$$
\left(\alpha_{* *} \frac{d^{2}}{d u^{2}}\right)(f)=\frac{d^{2}}{d u^{2}}(f \circ \alpha)
$$

is a tangent vector, that is, show that

$$
\left(\alpha_{* *} \frac{d^{2}}{d u^{2}}\right) \in T_{p} M
$$

(b) Show that the acceleration is not a tangent vector if the velocity is nonzero.
(c) Consider the parametric curve in \mathbb{R}^{2} given by $x=u^{2}, y=u^{4}$. Use the above ideas to construct a nonzero tangent vector to this curve at the origin.

