0. WARMUP (Do not turn this problem in, but see me if you need help.)

Determine the (nonzero) components $R^{i}{ }_{j k l}$ of the curvature 2-forms

$$
\Omega^{i} j=\frac{1}{2} R_{j k l}^{i} \sigma^{k} \wedge \sigma^{l}
$$

for the Robertson-Walker geometry, with line element

$$
d s^{2}=-d t^{2}+a(t)^{2}\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}\right)
$$

with $k=-1,0,1$ depending on whether the spatial cross-sections are hyperbolic, flat, or spherical, respectively.
One solution can be found in §A.9 of DFGGR - but try it on your own first!

## 1. TRACES

The components of the Einstein vector-valued 1-form $\overrightarrow{\boldsymbol{G}}=G^{i}{ }_{j} \sigma^{j} \hat{\boldsymbol{e}}_{i}$ are related to those of the Ricci vector-valued 1-form $\overrightarrow{\boldsymbol{R}}=R^{i}{ }_{j} \sigma^{j} \hat{\boldsymbol{e}}_{i}$ by

$$
G^{i}{ }_{j}=R^{i}{ }_{j}-\frac{1}{2} \delta^{i}{ }_{j} R,
$$

where $R=R^{i}{ }_{i}$. Find an expression for the trace $G=G^{i}{ }_{i}$ of $\overrightarrow{\boldsymbol{G}}$ in terms of $R$.
$R$ is called the trace of $\overrightarrow{\boldsymbol{R}}$; more precisely, it is the trace of the matrix of components $\left(R_{j}^{i}\right)$. You may assume if desired that the underlying geometry is 4-dimensional, with signature 1.

## 2. ROBERTSON-WALKER GEOMETRY

The components of the Ricci vector-valued 1-form $\overrightarrow{\boldsymbol{R}}$ (given above) are related to the components of the curvature 2 -form $\Omega^{i}{ }_{j}$ (also given above) by

$$
R_{i j}=R_{i m j}^{m}
$$

where the lowering of indices is accomplished with the metric, that is, $R_{i j} \sigma^{j}=\hat{\boldsymbol{e}}_{i} \cdot \overrightarrow{\boldsymbol{R}}$. Compute the (nonzero) components $G^{i}{ }_{j}$ of the Einstein vector-valued 1-form for the RobertsonWalker geometry.
You do not need to complete the Warmup question above before attempting this problem, although you may wish to do so.

