0. WARMUP (Do not turn this problem in, but see me if you need help.)

Determine the (nonzero) components $R^{i}{ }_{j k l}$ of the curvature 2-forms

$$
\Omega^{i} j=\frac{1}{2} R_{j k l}^{i} \sigma^{k} \wedge \sigma^{l}
$$

for the Robertson-Walker geometry, with line element

$$
d s^{2}=-d t^{2}+a(t)^{2}\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}\right)
$$

with $k=-1,0,1$ depending on whether the spatial cross-sections are hyperbolic, flat, or spherical, respectively.

1. Using the relationships

$$
\begin{aligned}
R_{i j} & =R^{m}{ }_{i m j} \\
G^{i}{ }_{j} & =R^{i}{ }_{j}-\frac{1}{2} \delta^{i}{ }_{j} R
\end{aligned}
$$

compute the (nonzero) components $G^{i}{ }_{j}$ of the Einstein tensor for the Robertson-Walker geometry.

