1. INDEX GYMNASTICS

In a coordinate basis $\left\{d x^{i}\right\}$ of 1-forms, the components $g_{i j}$ of the metric are defined by $d s^{2}=g_{i j} d x^{i} d x^{j}$. The dual basis $\left\{\overrightarrow{\boldsymbol{e}}_{i}\right\}$ of vectors satisfies $\overrightarrow{\boldsymbol{e}}_{i} \cdot \overrightarrow{\boldsymbol{e}}_{j}=g_{i j}$.
These bases are not necessarily orthogonal. It is however still true that $d \overrightarrow{\boldsymbol{r}}=d x^{i} \overrightarrow{\boldsymbol{e}}_{i}$.
(a) Determine an expression for $\overrightarrow{\boldsymbol{e}}_{i} \cdot \vec{\nabla} f$ in terms of partial derivatives.
(b) Acting on 1-forms $F=\overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}}, G=\overrightarrow{\boldsymbol{G}} \cdot d \overrightarrow{\boldsymbol{r}}$, the metric satisfies $g(F, G)=\overrightarrow{\boldsymbol{F}} \cdot \overrightarrow{\boldsymbol{G}}$ for any vectors $\overrightarrow{\boldsymbol{F}}, \overrightarrow{\boldsymbol{G}}$. Express the components $g^{i j}=g\left(d x^{i}, d x^{j}\right)$ in terms of the components $g_{i j}$. A derivation in 2 dimensions is acceptable if you don't see how to handle the general case.

2. DOUBLE-NULL COORDINATES

In 2-dimensional Minkowski space, let $u=t-x, v=t+x$.
(a) Express the line element $d s^{2}=-d t^{2}+d x^{2}$ in terms of the coordinate basis $\{d u, d v\}$.
(b) Determine the components $g^{i j}$ in this basis.
(c) Compute $g_{i j} g^{j k}$. What sort of a beast is it the components of?

3. TRACES

Suppose that two vector-valued 1-forms $\overrightarrow{\boldsymbol{G}}=G^{i}{ }_{j} \sigma^{j} \overrightarrow{\boldsymbol{e}}_{i}$ and $\overrightarrow{\boldsymbol{R}}=R^{i}{ }_{j} \sigma^{j} \overrightarrow{\boldsymbol{e}}_{i}$ have components that are related by

$$
G^{i}{ }_{j}=R^{i}{ }_{j}-\frac{1}{2} \delta^{i}{ }_{j} R,
$$

where $R=R^{i}{ }_{i}$. Find an expression for the trace $G=G^{i}{ }_{i}$ of $\overrightarrow{\boldsymbol{G}}$ in terms of R. R is called the trace of $\overrightarrow{\boldsymbol{R}}$; more precisely, it is the trace of the matrix of components $\left(R^{i}{ }_{j}\right)$. You may assume if desired that the underlying geometry is 4-dimensional, with signature 1.

