Script started on Mon May 9 20:47:52 2011 Octopus 1 % maple |\^/| Maple 9 (IBM INTEL LINUX) ._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2003 \ MAPLE / All rights reserved. Maple is a trademark of <____ ____> Waterloo Maple Inc. | Type ? for help. > readlib(grii): > grtensor(): GRTensorII Version 1.79 (R4) 6 February 2001 Developed by Peter Musgrave, Denis Pollney and Kayll Lake Copyright 1994-2001 by the authors. Latest version available from: http://grtensor.phy.queensu.ca/ Defaults read from the local grtensor.ini > makeg(sphere); Makeg 2.0: GRTensor metric/basis entry utility To quit makeg, type 'exit' at any prompt. Do you wish to enter a 1) metric [g(dn,dn)], 2) line element [ds], 3) non-holonomic basis [e(1)...e(n)], or 4) NP tetrad [l,n,m,mbar]? makeg>3; Enter coordinates as a LIST (eg. [t,r,theta,phi]): makeg>[theta,phi]; Would you like to enter 1) covariant components, 2) contravariant components, or 3) both. makeg>1; Enter the covariant components of basis vector '1' as a LIST (eg. [1,0,0,0]) or differential (eg. d[x] + d[y]): makeg>r*d[theta]; Enter the covariant components of basis vector '2' as a LIST (eg. [1,0,0,0]) or differential (eg. d[x] + d[y]): makeg>r*sin(theta)*d[phi]; Is the basis inner product 1) Diagonal, or 2) Symmetric? makeg>1; Enter eta[1,1]: makeg>1; Enter eta[2,2]: makeg>1; If there are any complex valued coordinates, constants or functions for this spacetime, please enter them as a SET ( eg. { z, psi } ). Complex quantities [default={}]: makeg>; {} The values you have entered are: Coordinates = [theta, phi] Basis 1-forms: omega[1] = [r, 0] omega[2] = [0, r sin(theta)] Inner product of basis vectors: [1 0] eta = [ ] [0 1] You may choose to 0) Use the metric WITHOUT saving it, 1) Save the metric as it is, 2) Re-enter a basis vector, 3) Re-enter the inner product, 4) Add/change constraints, 5) Add a text description, or 6) Abandon this metric and return to Maple. makeg>0; Default spacetime = sphere For the sphere spacetime: Coordinates x(up) a x = [theta, phi] Basis inner product eta(bup, bup) (a) (b) [1 0] eta = [ ] [0 1] Basis 1-forms e(bdn, dn) [r 0 ] e [(a)] [b] = [ ] [0 r sin(theta)] makeg() completed. > grcalc(metric):grdisplay(metric); For the sphere spacetime: Covariant metric tensor g(dn, dn) [ 2 ] [r 0 ] g [a] [b] = [ ] [ 2 2] [0 r sin(theta) ] > grcalc(rot(bup,bdn,bdn)):grdisplay(rot(bup,bdn,bdn)); Created definition for rot(bup,bdn,bdn) Created a definition for e(bdn,dn,pdn) For the sphere spacetime: rot(bup,bdn,bdn) (2) cos(theta) gamma [ (1) (2)] = ------------ r sin(theta) (1) cos(theta) gamma [ (2) (2)] = - ------------ r sin(theta) > grcalc(R(bup,bdn,bdn,bdn)):grdisplay(R(bup,bdn,bdn,bdn)); For the sphere spacetime: R(bup,bdn,bdn,bdn) (1) 1 R [ (2) (1) (2)] = ---- 2 r (2) 1 R [ (1) (1) (2)] = - ---- 2 r > quit; Octopus 2 % exit Script done on Mon May 9 20:50:03 2011