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Figure 1: The graphs of cosh 3, sinh 3, and tanh (3, respectively.

1 Hyperbola Geometry

In which a 2-dimensional non-FEuclidean geometry is constructed, which will
turn out to be identical with special relativity.

1.1 Trigonometry

The hyperbolic trig functions are usually defined using the formulas

B —p
coshf = €+26 (1)
B _ o8
sinhg = e (2)
2
and then b 3
sin
hg=
tanh cosh 3 (3)

and so on. We will discuss an alternative definition below. The graphs of
these functions are shown in Figure 1.
It is straightforward to verify from these definitions that

cosh? 3 —sinh? 8 = 1 (4)
sinh(aw+ ) = sinhacosh 4 cosh asinh 3 (5)
cosh(a+ ) = coshacoshf + sinh asinh 3 (6)

tanh o + tanh 3
h =
tanh(a + 5) 1 4+ tanh a.tanh 3 (7)
d
0 sinh3 = coshf (8)



d .
a5 coshf = sinhf 9)

These hyperbolic trig identities look very much like their ordinary trig coun-
terparts (except for signs). This similarity derives from the fact that

coshf3 = cos(iff) (10)
sinh = —isin(if) (11)

1.2 Distance

Euclidean distance is based on the unit circle, the set of points which are unit
distance from the origin. Hyperbola geometry is obtained simply by using
a different distance function! Measure the “squared distance” of a point
B = (z,y) from the origin using the definition

62 = 2% — ¢ (12)
Then the unit “circle” becomes the unit hyperbola
-y =1 (13)

and we further restrict ourselves to the branch with x > 0. If B is a point on
this hyperbola, then we can define the hyperbolic angle 5 between the line
from the origin to B and the (positive) x-axis to be the Lorentzian length !
of the arc of the unit hyperbola between B and the point (1,0). We could
then define the hyperbolic trig functions to be the coordinates (z,y) of B,
that is

coshf = = (14)
sinhg = y (15)

and a little work shows that this definition is exactly the same as the one
above. 2 This construction is shown in Figure 2, which also shows another

'No, we haven’t defined this. In Euclidean geometry, the the length of a curve is
obtained by integrating ds along the curve, where ds? = da? 4+ dy?. In a similar way, the
Lorentzian length is obtained by integrating do, where do? = dx? — dy?.

2Use 2% — y? = 1 to compute

dxz? dy?

2_ 7.2 _ g2 .2 _ _
dp* = do dy* — dz P I |

then take the square root of either expression and integrate. (The integrals are hard.)
Finally, solve for  or y in terms of 3, yielding (1) or (2), respectively.
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Figure 2: The unit hyperbola. The point A has coordinates (sinh (3, cosh [3),
and B = (cosh g3, sinh 3).

“unit” hyperbola, given by 22 — 4> = —1. By symmetry, the point A on
this hyperbola has coordinates (x,y) = (sinh 3, cosh 3). We will discuss the
importance of this hyerbola later.

Many of the features of the graphs shown in Figure 1 follow immediately
from this definition of the hyperbolic trig functions in terms of coordinates
along the unit hyperbola. Since the minimum value of z on this hyperbola
is 1, we must have cosh § > 1. As [ approaches +00, x approaches oo and y
approaches +o0o, which agrees with the asymptotic behavior of the graphs of
cosh 3 and sinh 3, respectively. Finally, since the hyperbola has asymptotes
y = £, we see that |tanh §| < 1, and that tanh § must approach +1 as 3
approaches 4oc.

So how do we measure the distance between two points? The “squared
distance” was defined in (12), and can be positive, negative, or zero! We
adopt the following convention: Take the square root of the absolute value
of the “squared distance”. As we will see in the next chapter, it will also
be important to remember whether the “squared distance” was positive or
negative, but this corresponds directly to whether the distance is “mostly
horizontal” or “mostly vertical”.
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Figure 3: A hyperbolic triangle with tanh § = g

1.3 Triangle Trig

We now recast ordinary triangle trig into hyperbola geometry.
Suppose you know tanh 3 = %, and you wish to determine cosh 5. One
can of course do this algebraically, using the identity

1

W= —
cosh™ 5 1 — tanh?®

(16)
But it is easier to draw any triangle containing an angle whose hyperbolic
tangent is % In this case, the obvious choice would be the triangle shown in
Figure 3, with sides of 3 and 5.

What is cosh 37 Well, we first need to work out the length ¢ of the
hypotenuse. The (hyperbolic) Pythagorean Theorem tells us that

52 — 3% = §? (17)

so ¢ is clearly 4. Take a good look at this 3-4-5 triangle of hyperbola geometry,
which is shown in Figure 3! But now that we know all the sides of the triangle,
it is easy to see that cosh 3 = g.

Trigonometry is not merely about ratios of sides, it is also about projec-
tions. Another common use of triangle trig is to determine the sides of a
triangle given the hypotenuse d and one angle 3. The answer, of course, is
that the sides are dcosh 8 and dsinh 3, as shown in in Figure 4.
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Figure 4: A hyperbolic triangle in which the hypotenuse and one angle are
known.

1.4 Rotations
By analogy with the Fuclidean case, we define a hyperbolic rotation through

the relations
T\ _ c.osh £ sinh (8 x’ (18)
Y sinh 3 cosh 3 Y

This corresponds to “rotating” both the x and y axes into the first quadrant,
as shown in Figure 2. While this may seem peculiar, it is easily verified that
the “distance” is invariant, that is,

.1'2 _ y2 = .I'/Z o y/2 (19)

which follows immediately from the hyperbolic trig identity (4).

1.5 Projections

We can ask the same question as we did for Euclidean geometry. Consider
a rectangle of width 1 whose sides are parallel to the unprimed axes. How
wide is it when measured in the primed coordinates? It turns out that the
width of the box in the primed coordinate system is less than 1. This is
length contraction, to which we will return in the next section, along with
time dilation.



1.6 Addition Formulas

What is the slope of the line from the origin to the point A in Figure 27 The
equation of this line, the y'-axis, is

x = ytanh (3 (20)
Consider now a line with equation
7’ =y tanha (21)

What is its (unprimed) slope? Again, slopes don’t add, but (hyperbolic)
angles do; the answer is that

r = ytanh(a + () (22)

which can be expressed in terms of the slopes tanh o and tanh (3 using (7).
As discussed in more detail in the next section, this is the Einstein addition
formula!



2 The Geometry of Special Relativity

In which it is shown that special relativity is just hyperbolic geometry.

2.1 Spacetime Diagrams

A brilliant aid in understanding special relativity is the Surveyor’s parable
introduced by Taylor and Wheeler [1, 2]. Suppose a town has daytime sur-
veyors, who determine North and East with a compass, nighttime surveyors,
who use the North Star. These notions of course differ, since magnetic north
is not the direction to the North Pole. Suppose further that both groups
measure north/south distances in miles and east/west distances in meters,
with both being measured from the town center. How does one go about
comparing the measurements of the two groups?

With our knowledge of Euclidean geometry, we see how to do this: Con-
vert miles to meters (or vice versa). Furthermore, distances computed with
the Pythagorean theorem do not depend on which group does the surveying.
Finally, it is easily seen that “daytime coordinates” can be obtained from
“nighttime coordinates” by a simple rotation. The moral of this parable is
therefore:

1. Use the same units.
2. The (squared) distance is invariant.
3. Different frames are related by rotations.

Applying that lesson to relativity, the first thing to do is to measure both
time and space in the same units. How does one measure distance in seconds?
that’s easy: simply multiply by c¢. Thus, since ¢ = 3 x 108 =, 1 second of
distance is just 3 x 10® m. 3 Note that this has the effect of setting ¢ = 1,
since the number of seconds (of distance) traveled by light in 1 second (of
time) is precisely 1.

Of course, it is also possible to measure time in meters: simply divide
by c¢. Thus, 1 meter of time is the time it takes for light (in vacuum) to
travel 1 meter. Again, this has the effect of setting ¢ = 1.

3A similar unit of distance is the lightyear, namely the distance traveled by light in 1
year, which would here be called simply a year of distance.



2.2 Lorentz Transformations

The Lorentz transformation between a frame (x,t) at rest and a frame (2/,t")
moving to the right at speed v was derived in class. The transformation from
the moving frame to the frame at rest is given by

r = (2" +ot) (23)
v
t =~ (t’ + CQ:x’) (24)
where
1
V= (25)
-5

C

The key to converting this to hyperbola geometry is to measure space and
time in the same units by replacing t by ct. The transformation from the
moving frame, which we now denote (z/,ct’), to the frame at rest, now de-
noted (z, ct), is given by

r = (@ + ¢ ct') (26)
c
ca = v (ct/ +2 x’) (27)
c

which makes the symmetry between these equations much more obvious.
We can simplify things still further. Introduce the rapidity 3 via *

% = tanh (28)

Inserting this into the expression for v we obtain

1 h?
_ _ 2COS ﬁ — = cosh 3 (29)
itz o3 s
and v
—~ = tanh § cosh § = sinh (30)
c

4WARNING: Some authors use 3 for 2, not the rapidity.
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Figure 5: The Lorentz transformation between an observer at rest and an
observer moving at speed ¢ = tanh 3 is shown as a hyperbolic rotation. The
point A has coordinates (sinh 3, cosh 3), and B = (cosh 3,sinh 3). (Units
have been chosen such that ¢ = 1.)

Inserting these identities into the Lorentz transformations above brings them
to the remarkably simple form

x = x'cosh(+ ct’'sinh 3 (31)
ct = a'sinh 3+ ct’ cosh 3 (32)

which in matrix form are just

x cosh sinh x’
_(“ 5 b , (33)
ct sinh 3 cosh (8 ct
But (33) is just (18), with y = ct!
Thus, Lorentz transformations are just hyperbolic rotations! As noted in
the previous section, the invariance of the interval follows immediately from

the fundamental hyperbolic trig identity (4). This invariance now takes the

form
22— At = 2 — AP (34)

We thus have precisely the situation described in Figure 2, but with y
replaced by ct; this is shown in Figure 5.
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2.3 Space and Time

We now return to the peculiar fact that the “squared distance” between two
points can be positive, negative, or zero. This sign is positive for horizontal
distances and negative for vertical distances. But these directions correspond
to the coordinates x and t, and measure space and time, respectively — as
seen by the given observer. But any observer’s space axis must intersect
the unit hyperbola somewhere, and hence corresponds to positive “squared
distance”. Such directions have more space than time, and will be called
spacelike. Similarly, any observer’s time axis intersects the hyperbola z? —
c?t? = —1, corresponding to negative “squared distance”; such directions are
timelike.

What about diagonal lines at a (Euclidean!) angle of 45°7 These corre-
spond to a “squared distance” of zero — and to moving at the speed of light.
All observers agree about these directions, which will be called lightlike. In
hyperbola geometry, there are thus preferred directions of “length zero”. In-
deed, this is the geometric realization of the idea that the speed of light is
the same for all observers!

It is important to realize that every spacelike direction corresponds to the
space axis for some observer. Events separated by a spacelike line occur at
the simultaneously for that observer — and the (square root of the) “squared
distance” is just the distance between the events as seen by that observer.
Similarly, events separated by a timelike line occur at the same place for
some observer, and the (square root of —1 times the) “squared distance” is
just the time which elapses between the events as seen by that observer.

On the other hand, events separated by a timelike line do not occur simul-
taneously for any observer! We can thus divide the spacetime diagram into
causal regions as follows: Those points connected to the origin by spacelike
lines occur “now” for some observer, whereas those points connected to the
origin by timelike lines occur unambiguously in the future or the past. This
is shown in Figure 6. °

In order to be able to make sense of cause and effect, only events in our
past can influence us, and we can only influence events in our future. Put
differently, if information could travel faster than the speed of light, then
different observers would no longer be able to agree on cause and effect.

SWith two or more spatial dimensions, the lightlike directions would form a surface
called the light cone, and the regions labeled “now” would be connected.
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Figure 6: The causal relationship between points in spacetime and the origin.

2.4 Dot Product

In Euclidean geometry, distances can be described by taking the (squared!)
length of a vector using the dot product. Denoting the unit vectors in the x
and y directions by @ and y, respectively, then the vector from the origin to
the point (z,y) is just

r=rx+yy (35)
whose (squared) length is just
7? =7 7 =2+ (36)

It is straightforward to generalize this to hyperbola geometry. Denote the
unit vectors in the ¢ and z directions by £ and &. ¢ Then the (Lorentzian)
dot product can be defined by the requirement that this be an orthonormal
basis, in the sense that

T 1 (37)
t-t —1 (38)
z -t 0 (39)
Any point (z, ct) in spacetime can thus be identified with the vector
FP=xd+ctt (40)

6Unit vectors are dimensionless! It is neither necessary nor desirable to include a factor
of ¢ in the definition of .
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from the origin to that point, whose “squared length” is just the “squared
distance” from the origin, namely

72 =7 7 =a® — At (41)

One of the fundamental properties of the Euclidean dot product is that

U -0 = |ul|v]| cosb (42)

where 6 is the (smallest) angle between the directions of % and ¥. This
relationship between the dot product and projections of one vector along
another can in fact be used to define the dot product. What happens in
hyperbola geometry?

First of all, the dot product can be used to define right angles: Two
vectors 4 and ¥ are said to be orthogonal (or perpendicular) precisely when
their dot product is zero, that is

Ul u-9=0 (43)

We will adopt this definition unchanged in hyperbola geometry.

When are 4 and ¥ perpendicular? Assume first that 4 is spacelike. We
can assume without loss of generality that @ is a unit vector, in which case
it takes the form

@ = cosha @ +sinhat (44)

What vectors are perpendicular to @? One such vector is
¥ = sinha # + coshat (45)

and it is easy to check that all other solutions are multiples of this one. Note
that ¥ is timelike! Had we assumed instead that ¥ were timelike, we would
merely have interchanged the roles of 4 and v.

Furthermore, 4 and ¥ are just the space and time axes, respectively, of an
observer moving with speed ¥ = tanh «. So orthogonal directions correspond
precisely to the coordinate axes of some observer.

What if @ is lightlike? It is a peculiarity of Lorentzian (hyperbola) ge-
ometry that there are nonzero vectors of length zero. But since the dot
product gives the length, having length zero means that lightlike vectors are
perpendicular to themselves!
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We can finally define the length of a vector ¥ by
0] = /|0 - 9] (46)
If ¥ is spacelike we can write
¥ = |¥|(cosha & + sinh a t) (47)
while if ¥ is timelike we can write
¥ = |¥|(sinha & + cosh a t) (48)

(If ¥ is lightlike, |¥| = 0, so no such expression exists.)

The above argument shows that timelike vectors can only be perpendicu-
lar to spacelike vectors, and vice versa. We will also say in this case that the
vectors form a right angle. Recall that hyperbolic angles were defined along
the unit hyperbola, hence only exist (as originally defined) between spacelike
directions! It is straightforward to extend this to timelike directions using
the hyperbola x? —ct? = —1; this was implicitly done when drawing Figure 2.
But there is no hyperbola relating timelike directions to spacelike ones. Thus,
a “right angle” isn’t an angle at all!

A right triangle is one which contains a right angle. By the above dis-
cussion, one of the legs of such a triangle must be spacelike, and the other
timelike. Consider first the case where the hypotenuse is either spacelike or
timelike. The only hyperbolic angle in such a triangle is the one between the
hypotenuse and the leg of the same type, that is between the two timelike
sides if the hypotenuse is timelike, and between the two spacelike sides if the
hypotenuse is spacelike. Several such hyperbolic right triangles are shown
in Figures 7. It is also possible for the hypotenuse to be null, as shown in
Figure 8. Such triangles do not have any hyperbolic angles!

What happens if we take the dot product between two spacelike vectors?
We can assume without loss of generality that one vector is parallel to the x
axis, in which case we have

= ||z (49)
= |8|(cosh a & + sinh o f) (50)

QL &

so that the dot product satisfies

U - U = |u||v| cosha (51)
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Figure 7: Some hyperbolic right triangles.
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Figure 8: More hyperbolic right triangles. The right angle is on the left!

What happens if both vectors are timelike? The above argument still works,
except that the roles of £ and £ must be interchanged, resulting in

U -V = —|u||V] cosh o (52)

In both cases, note that |9| cosh « is the projection of ¥ along 4; see Figure 9.
But what happens if we take the dot product between a timelike vector
and a spacelike vector? We can again assume without loss of generality that

— @ — —
v |’lTl,‘ v v
(67
«
=
vV =
Ul

Figure 9: Hyperbolic projections between two spacelike vectors, or between
two timelike vectors.
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Figure 10: Hyperbolic projections between timelike and spacelike vectors.

the spacelike vector is parallel to the x axis, so that

u = |u|x (53)
¥ = |¥|(sinha® + coshat) (54)

The dot product now satisfies
U - U = |u||V]sinh (55)

At first sight, this is something new. But note from the first drawing in
Figure 10 that ¥ sinh « is just the projection of ¥ along 4! The new feature
here is that we can’t define the angle between a timelike direction and a
spacelike direction. The only angle in the triangle which is defined is the one
shown! 7

" Alternatively, we could have assumed that the timelike vector was parallel to the ¢
axis, resulting in the second drawing in Figure 10. The conclusion is the same, although
now it represents the projection of 4 along v.
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3 Applications

3.1 Addition of Velocities

What is the rapidity 47 Consider an observer moving at speed v to the right.
This observer’s world line intersects the unit hyperbola

At —a? =1 (ct > 0) (56)
at the point A = (sinh 3, cosh 3); this line has “slope” ®
Y — tanh 0] (57)
c

as required. Thus, # can be thought of as the hyperbolic angle between the
ct-axis and the worldline of a moving object. As discussed in the preceding
section, 3 turns out to be precisely the distance from the axis as measured
along the hyperbola (in hyperbola geometry!). This was illustrated in Fig-
ure 5.

Consider therefore an object moving at speed u relative to an observer
moving at speed v. Their rapidities are given by

= tanh « (58)

oleo

= tanh (3 (59)

To determine the resulting speed with respect to an observer at rest, simply
add the rapidities! One way to think of this is that you are adding the arc
lengths along the hyperbola. Another is that you are following a (hyperbolic)
rotation through a (hyperbolic) angle § (to get to the moving observer’s
frame) with a rotation through an angle o. In any case, the resulting speed
w is given by

w tanh o + tanh 3 i

¢ = bl ) = e hatanhp 14 %

(60)

which is — finally — precisely the Einstein addition formula!

3.2 Length Contraction

We now return to the question of how “wide” things are.

8Tt is not obvious whether “slope” should be defined by % or by the reciprocal of

this expression. This is further complicated by the fact that both (x,ct) and (ct, z) are
commonly used to denote the coordinates of the point A!
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Figure 11: Length contraction as a hyperbolic projection.

Consider first a meter stick at rest. In spacetime, the stick “moves”
vertically, that is, it ages. This situation is shown in the first sketch in
Figure 11, where the horizontal lines show the meter stick at various times
(according to an observer at rest). How “wide” is the worldsheet of the stick?
The observer at rest of course measures the length of the stick by locating
both ends at the same time, and measuring the distance between them. At
t = 0, this corresponds to the 2 heavy dots in the sketch, one at the origin
and the other on the unit hyperbola. But all points on the unit hyperbola
are at an interval of 1 meter from the origin. The observer at rest therefore
concludes, unsurprisingly, that the meter stick is 1 meter long.

How long does a moving observer think the stick is? This is just the
“width” of the worldsheet as measured by the moving observer. This observer
follows the same procedure, by locating both ends of the stick at the same
time, and measuring the distance between them. But time now corresponds
to ¢/, not t. At ¢’ = 0, this measurement corresponds to the heavy line in the
sketch. Since this line fails to reach the unit hyperbola, it is clear that the
moving observer measures the length of a stationary meter stick to be less
than 1 meter. This is length contraction.

To determine the exact value measured by the moving observer, compute
the intersection of the line = 1 (the right-hand edge of the meter stick)
with the line ' = 0 (the 2’-axis), or equivalently ¢t = z tanh 3, to find that

ct = tanh (61)
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X

Figure 12: Time dilation as a hyperbolic projection.

so that z’ is just the interval from this point to the origin, which is

1
¥ =22 — 22 =4/1 —tanh®f§ = h (62)
cos

What if the stick is moving and the observer is at rest? This situation is
shown in the second sketch in Figure 11. The worldsheet now corresponds
to a “rotated rectangle”, indicated by the parallelograms in the sketch. The
fact that the meter stick is 1 meter long in the moving frame is shown by
the distance between the 2 heavy dots (along ¢ = 0), and the measurement
by the observer at rest is indicated by the heavy line (along t = 0). Again,
it is clear that the stick appears to have shrunk, since the heavy line fails to
reach the unit hyperbola.

Thus, a moving object appears shorter by a factor 1/ cosh 5. It doesn’t
matter whether the stick is moving, or the observer; all that matters is their
relative motion.

3.3 Time Dilation

We now investigate moving clocks. Consider first the smaller dot in Figure 12.
This corresponds to ¢t = 1 (and = = 0), as evidenced by the fact that this
point is on the (other) unit hyperbola, as shown. Similarly, the larger dot,
lying on the same hyperbola, corresponds to ¢t = 1 (and 2/ = 0). The
horizontal line emanating from this dot gives the value of ct there, which
is clearly greater than 1. This is the time measured by the observer at rest
when the moving clock says 1; the moving clock therefore runs slow. But now
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consider the diagonal line emanating from the larger dot. At all points along
this line, ct’ = 1. In particular, at the smaller dot we must have ¢’ > 1. This
is the time measured by the moving observer when the clock at rest says 1;
the moving observer therefore concludes the clock at rest runs slow!

There is no contradiction here; one must simply be careful to ask the
right question. In each case, observing a clock in another frame of reference
corresponds to a projection. In each case, a clock in relative motion to the
observer appears to run slow.

3.4 Doppler Shift

The frequency f of a beam of light is related to its wavelength A by the
formula

fa=c (63)

How do these quantities depend on the observer?

Consider an inertial observer moving to the right in the laboratory frame
who is carrying a flashlight that is pointing to the left; see Figure 13. Then
the moving observer is traveling along a path of the form 2’ = z} = const.
Suppose the moving observer turns on the flashlight (at time t}) just long
enough to emit 1 complete wavelength of light, and that this takes time dt’.
Then the moving observer “sees” a wavelength

N =cdl (64)

According to the lab, the flashlight was turned on at the event (¢y,x;),
and turned off dt; seconds later, during which time the moving observer
moved a distance dr; meters to the right. But when was the light received,
at x = 0, say?

Let (to,0) denote the first reception of light by a lab observer at = = 0,
and suppose this observer sees the light stay on for dt, seconds. Since light
travels at the speed of light, we have the equations

c(to—t1) = m (65)
C[(to + dto) - (tl + dtl)] = x+ dl’l (66)

from which it follows that
C(dto — dtl) = d$1 (67)

so that
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(t+dt; ,0)

(t,,0) (t Fdt,,x, +dx,)
(%)

Figure 13: The Doppler effect: An observer moving to the right emits a
pulse of light to the left, which is later seen by a stationary observer. The
wavelengths measured by the two observers differ, causing a Doppler shift in
the frequency.

Cdt() = dl’1 + Cdtl (68)
= (dz} cosh § + cdty sinh B) + (cdt] cosh § + dx sinh 3)  (69)
= (cosh 3+ sinh §) cdt] (70)

since dxy = 0. But the wavelength as seen in the lab is

A = cdty (71)
so that
A dt
v o d_tz = cosh 3 + sinh 8
142
= coshﬂ(l—{—tanhﬁ):'y(1+%>: 11_2 (72)

The frequencies transform inversely, that is

£+
foN1-

ol

(73)

ole
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