
4 Relativistic Mechanics

In which it is shown that mass is energy.

4.1 Proper Time

In the rest frame, position doesn’t change. Let τ denote “wristwatch time”
[2], that is, time as measured by a clock carried by an observer moving at
constant speed u with respect to the given frame. In the moving observer’s
rest frame, position doesn’t change. We therefore have

(∆x)2 − c2(∆t)2 = 0 − c2(∆τ)2 (74)

so that

(∆τ)2 =

(

1 −
1

c2

(

∆x

∆t

)2
)

(∆t)2 (75)

or equivalently

dτ =

√

1 −
u

c2
dt =

1

γ
dt =

1

cosh α
dt (76)

Note that proper time is independent of reference frame!

4.2 Energy and Momentum

Consider the ordinary velocity of a moving object, defined by

u =
d

dt
x (77)

This transforms in a complicated way, since

1

c

dx′

dt′
=

1

c
dx
dt

− v
c

1 − v
c2

dx
dt

(78)

The reason for this is that both the numerator and the denominator need
to be transformed. The invariance of proper time suggests that we should
instead differentiate with respect to proper time, since of course

d

dτ
x′ =

dx

dτ
(79)
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or in other words since the operator d
dτ

pulls through the Lorentz transfor-
mation, so that only the numerator is transformed when changing reference
frames.

Furthermore, the same argument can be applied to t, which suggests
that there are (in 2 dimensions) 2 components to the velocity. We therefore
consider the “2-velocity”

u =
d

dτ

(

ct

x

)

=

(

c dt
dτ
dx
dτ

)

(80)

But since
dt = cosh α dτ (81)

and
dx2 − c2dt2 = −c2dτ 2 (82)

we also have
dx = c sinh α dτ (83)

so that

u = c

(

cosh α

sinh α

)

(84)

Note that 1

c
u is a unit vector, that is

1

c2
u · u = 1 (85)

and further that
u

c
=

dx

dt
= tanh α (86)

as expected.

4.3 Conservation Laws

Suppose that (Newtonian) momentum is conserved in a given frame, that is
∑

mivi =
∑

m̂j v̂j (87)

(Both of these would be 0 in the center-of-mass frame.) Changing to another
frame moving with respect to the first at speed v, we have

vi = v′

i + v (88)

v̂j = v̂′

j + v (89)
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so that
∑

mi(v
′

i + v) =
∑

m̂j(v̂
′

j + v) (90)

We therefore see that

∑

miv
′

i =
∑

m̂j v̂
′

j ⇐⇒
∑

mi =
∑

m̂j (91)

that is, momentum is conserved in all inertial frames provided it is conserved
on one frame and mass is conserved.

Repeating the computation for the kinetic energy, we obtain starting from

1
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2
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2
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m̂j v̂
2

j (92)

that
1

2

∑

mi(v
′

i + v)2 =
1

2

∑

m̂j(v̂
′

j + v)2 (93)

Expanding this out, we discover that (kinetic) energy is conserved in all
frames provided it is conserved in one frame and both mass and momentum
are conserved.

The situation in special relativity is quite different.
Consider first the momentum defined by the ordinary velocity, namely

p = mu = m
dx

dt
(94)

This momentum is not conserved!
We use instead the momentum defined by the 4-velocity, which is given

by

p = m
dx

dτ
= mc sinh α (95)

Suppose now that, as seen in a particular inertial frame, the total momentum
of a collection of particles is the same before and after some interaction, that
is

∑

mic sinh αi =
∑

m̂jc sinh α̂j (96)

Consider now the same situation as seen by another inertial reference
frame, moving with respect to the first with speed

v = c tanh β (97)
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We therefore have

αi = α′

i + β (98)

α̂j = α̂′

j + β (99)

Inserting this into the conservation rule (96) leads to

∑

mic sinh α′

i =
∑

mic sinh(αi − β) (100)

=
(

∑

mic sinh αi

)

cosh β −
(

∑

mic cosh αi

)

sinh β (101)

and similarly

∑

m̂jc sinh α̂′

j =
(

∑

m̂jc sinh α̂j

)

cosh β −
(

∑

m̂jc cosh α̂j

)

sinh β (102)

The coefficients of cosh β in these 2 expressions are equal due to the assumed
conservation of momentum in the original frame. We therefore see that
conservation of momentum will hold in the new frame if and only if we have
in addition that the coefficients of sinh β agree, namely

∑

mic cosh αi =
∑

m̂jc cosh α̂j (103)

But what is this?

4.4 Energy

This mystery is resolved by recalling that momentum is mass times velocity,
and that there is also a “t-component” to the velocity. In analogy with the
2-velocity, we therefore define the “2-momentum” to be

p = m

(

c dt
dτ
dx
dτ

)

= mc

(

cosh α

sinh α

)

(104)

The second term is clearly the momentum, which we denote by p, but what
is the first term? If the object is at rest, α = 0, and the first term is therefore
just mc. But Einstein’s famous equation

E = mc2 (105)

leads us to suspect that this is some sort of energy. In fact, mc2 is called the
rest energy or rest mass.
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In general, we define the energy of an object moving at speed u = c tanh α

to be the first component of p, that is we define

E := mc2 cosh α (106)

p := mc sinh α (107)

or equivalently

p =
( 1

c
E

p

)

(108)

Is this definition reasonable? Consider the case u
c
� 1. Then

E = mc2 cosh α = mc2γ (109)

=
mc2

√

1 − u2

c2

(110)

≈ mc2 +
1

2
mu2 +

3

8
m

u4

c2
+ ... (111)

The first term is the rest energy, the next term is the Newtonian kinetic
energy, and the remaining terms are relativistic corrections to the kinetic
energy.

The moral is that conservation of 2-momentum is equivalent to both
conservation of momentum and conservation of energy, but that there is no
requirement that the total mass be conserved.

Taking the (squared) norm of the 2-momentum, we obtain

−c2
p · p = E2 − p2c2 = m2c4 (112)

Note that this equation continues to makes sense if m = 0, although the
expressions for E and p separately in terms of α or γ do not. In fact, γ must
approach ∞, or equivalently u2

c2
= 1, so that |u| = c; such particles always

move at the speed of light!
We therefore conclude that there can be massless particles, which move

at the speed of light, and which satisfy (m = 0 and)

E = |p|c 6= 0 (113)

Photons are examples of such particles; quantum mechanically, one has E =
h̄ν, where ν is the frequency of the light (and h̄ = h

2π
where h is Planck’s

constant.)

27



4.5 Useful Formulas

The key formulas for analyzing the collision of relativistic articles can all be
derived from (106) and (107). Taking the difference of squares leads to the
key formula (112) relating energy, momentum, and (rest) mass, which holds
also for massless particles. Rewriting (106) and (107) leads directly to

γ = cosh α =
E

mc2
=

1
√

1 − u2

c2

(114)

and
sinh α =

p

mc
=

u

c
γ (115)

and dividing these formulas yields

tanh α =
pc

E
=

u

c
(116)

Finally, another useful formula is

m2c4

E2
= 1 −

u2

c2
=
(

1 +
u

c

)(

1 −
u

c

)

≈ 2
(

1 −
u

c

)

(117)

where the final approximation holds if u ≈ c.
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