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CURVATURE AND ALL THAT
Everything you ever wanted to know about curvature — and then some...

1. INTRODUCTION

This is a very concise summary of the basic idea of curvature, intended for those studying
general relativity. Along the way, we encounter covariant differentiation and affine connec-
tions in considerable generality, and then discusses how to compute curvature in 2 important
special cases, namely using a coordinate basis and using an orthonormal basis. The latter
method requires familiarity with differential forms; the former does not.

Please bear in mind when reading this document that it is not necessary to follow the
details of each and every step. Rather, it is important to have a basic grasp of what is going
on, and to be able to calculate curvature using any one method.

While the presentation is aimed at those who are familiar with differential forms, it
should be possible to follow most of the calculations with only a basic knowledge of tensors.
(A very quick summary of tensors is given as an appendix.) Most formulas are also given in
basis-free language.

2. THEORY

a) Curvature and Torsion

Pick any basis
{

σi
}

of 1-forms, not necessarily orthonormal. Choose any 1-forms ωi
j

to be the connection 1-forms. Then the torsion 2-forms Θk and the curvature 2-forms Ωi
j

are defined by the Cartan structure equations

Θk = dσk + ωk
i ∧ σi

Ωi
j = dωi

j + ωi
m ∧ ωm

j

Expanding with respect to our basis, we can write

ωk
i =: Γ k

ij σj

Θk =:
1

2
T k

ij σi ∧ σj

Ωi
j =:

1

2
Ri

jkl σ
k ∧ σl

The latter 2 expressions correspond to a
(

1
2

)

tensor called the torsion tensor, whose com-

ponents are T k
ij , and a

(

1
3

)

tensor called the Riemann curvature tensor, whose components

are Ri
jkl. The “connection components” Γ k

ij are called Christoffel symbols, and are not the
components of a tensor. In particular, they can all be 0 in one basis but not in another,
which is not possible for tensor components.

Two contractions of the Riemann tensor are important in relativity. These are the Ricci
tensor, whose components are defined by Rij = Rm

imj , and the Ricci scalar, which is the
“trace” of the Ricci tensor, defined by R = gijRij , where gij denotes the (components of
the) inverse of the metric tensor, which is discussed further below.
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b) Covariant Differentiation

We are looking for a derivative operator ∇X which takes tensors to tensors of the same
rank. It should have at least the following properties (we will add more later):

∇X(f) = X(f)

∇X+hY T = ∇XT + h∇Y T

∇X(S + T ) = ∇XS + ∇XT

∇X(S ⊗ T ) = (∇XS) ⊗ T + S ⊗ (∇XT )

∇X

(

α(Y )
)

=
(

∇Xα
)

(Y ) + α
(

∇X(Y )
)

The first of these says that covariant differentiation should reduce to ordinary differentiation
when applied to functions, the next two are linearity requirements, the fourth is the usual
product rule, and the last says that a “contraction” 1 can be done either before or after
taking the derivative.

As outlined below, it is fairly easy to see that covariant differentiation is completely
determined by its action on a basis. So let {ei} denote the basis of vector fields which is

dual to the given basis
{

σi
}

of 1-forms. Given a choice of connection 1-forms, defining

∇ej
ei := ωk

i(ej) ek

leads to a unique covariant differentiation operator satisfying the above requirements. Con-
versely, any such operator determines connection 1-forms via this equation. Thus, choosing
a derivative operator is completely equivalent to choosing connection 1-forms.

To see that knowing the derivative of vector fields is enough, consider a 1-form α. The
above requirements determine the derivative of α by computing

X
(

α(Y )
)

= ∇X

(

α(Y )
)

=
(

∇Xα
)

(Y ) + α
(

∇X(Y )
)

for any vector fields X, Y . Inserting a basis 1-form for α, we obtain

∇ej
σk = −ωk

i(ej) σi

These formulas can be used to differentiate any tensor, by expanding with respect to
an explicit basis and using the product rule. An explicit example is given by

∇XY =
(

X(Y k) + ωk
i(X)Y i

)

ek

where Y k = σk(Y ). Thus, the components of ∇XY are given by

XjY k
;j := Xj

(

Y k
,j + Γ k

ijY
i
)

Note the conventional use of a comma to denote partial differentiation, that is f,i := ei(f),
and the corresponding use of a semicolon to denote covariant differentiation. Similarly, the
components of ∇Xα are

Xjαi;j := Xj
(

αi,j − Γ k
ijαk

)

In general, the derivative of a
(

p
q

)

tensor will contain p + q “correction terms” involving

the connection ωk
i (or equivalently Γ k

ij), with appropriate signs.

1 A contraction turns the
(

1
1

)

tensor α ⊗ X with components αµXν into the function α(X) = αµXµ.
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c) Example

Consider first Euclidean R
2 in rectangular coordinates. Ordinary partial differentia-

tion satisfies all the requirements, and can therefore be used for covariant differentiation as
well. But the basis vector fields are constant, so that their derivatives vanish. Thus, in this
case, covariant differentiation simply means to take the partial derivatives of the compo-
nent functions. Equivalently, all the Christoffel symbols vanish; the connection 1-forms are
identically 0.

Consider now the the same situation, but using the coordinate polar basis {dr, dθ}, with

dual basis2 {er, eθ} =
{

∂
∂r ,

∂
∂θ

}

. We wish to express the same covariant derivative in this

basis. However, since the basis is not constant, we must take the derivatives of the basis as
well as the components.

One way to do this is to express the polar basis in terms of the Cartesian basis
{

∂
∂x , ∂

∂y

}

,

which you can think of as {~ı, ~}. Since

∂

∂r
= cos θ

∂

∂x
+ sin θ

∂

∂y

∂

∂θ
= −r sin θ

∂

∂x
+ r cos θ

∂

∂y

direct computation yields

∇erer =
∂er

∂r
= 0 ∇ereθ =

∂eθ

∂r
=

1

r
eθ =

∂er

∂θ
= ∇eθ

er ∇eθ
eθ =

∂eθ

∂θ
= −r er

Comparing this with the formula above we obtain

ωr
r = 0 ωθ

θ =
1

r
dr ωθ

r =
1

r
dθ ωr

θ = −r dθ

from which the Christoffel symbols can be read off.

Consider yet again the the same situation, this time using the orthonormal polar basis

{dr, r dθ}, with dual basis2
{

er̂, eθ̂

}

=
{

∂
∂r ,

1
r

∂
∂θ

}

. This time we get

∂

∂r
= cos θ

∂

∂x
+ sin θ

∂

∂y

1

r

∂

∂θ
= − sin θ

∂

∂x
+ cos θ

∂

∂y

and thus

∇er̂
er̂ =

∂er̂

∂r
= 0 =

∂e
θ̂

∂r
= ∇er̂

e
θ̂

∇e
θ̂
er̂ =

1

r

∂er̂

∂θ
=

1

r
e
θ̂

∇e
θ̂
e
θ̂

=
1

r

∂e
θ̂

∂θ
= −

1

r
er̂

so that

ωr̂
r̂ = 0 = ωθ̂

θ̂
ωθ̂

r̂ = dθ = −ωr̂
θ̂

It is important to realize that the connection 1-forms in these 3 cases are quite different.
In particular, the Christoffel symbols are identically 0 in rectangular coordinates, but not
in the other — and therefore are not the components of a tensor. However, it is instructive
to check by explicit computation that the torsion and curvature vanish for this connection,
regardless of which basis is used to compute them; the torsion and curvature are tensors.

2 Note the conventional use of the coordinates, rather than numbers, to label the basis, and hats to
distinguish the orthonormal case. Numerical indices may of course be used instead, but make sure you
know which basis you’re using!
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d) The Torsion and Curvature, Revisited

In order to specify a preferred connection, we need expressions for the curvature and
torsion. We outline here the lengthy calculation needed to derive these. You may wish to
skip this section on first reading — or entirely.

Given a covariant derivative operator ∇, or equivalently given connection 1-forms ωi
j ,

the torsion tensor T is defined by

T (X,Y ) = ∇XY −∇Y X − [X,Y ]

and the Riemann curvature tensor R is defined by

R(X,Y ) Z = (∇X∇Y −∇Y ∇X −∇[X,Y ]) Z

(It takes some work to show that these expressions in fact define tensors — the trick is to
show that they are suitably multilinear.) In both cases, [X,Y ] denotes the Lie bracket or
commutator of X and Y , which is the vector field defined by

[X,Y ](f) = X
(

Y (f)
)

− Y
(

X(f)
)

Using these definitions, one can work out the components of these tensors in a given
basis in terms of the Christoffel symbols, obtaining (after some work!)

T k
ij ek := T (ei, ej) = −

(

Γ k
ij − Γ k

ji

)

ek − [ei, ej ]

and

Ri
jkl := σi

(

R(ek, el)ej

)

= ek

(

Γ i
jl

)

− el

(

Γ i
jk

)

+ Γ i
mkΓ

m
jl − Γ i

mlΓ
m

jk − Γ i
jm[ek, el]

m

Using these expressions, as well as the important identity

2 dα(X,Y ) = X
(

α(Y )
)

− Y
(

α(X)
)

− α
(

[X,Y ]
)

for any 1-form α and vector fields X, Y , one can further verify (again after some work!) that
the components T k

ij and Ri
jkl agree with those defined above using differential forms! 3

3 It is logically cleaner to proceed in this direction, rather than the other way around, since the ear-
lier expressions must be assumed to be antisymmetric in their final 2 indices, albeit without loss of
generality.
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e) The Metric Connection

Again, this section outlines how to calculate an important result, the details of which
can be skipped on first reading.

We now assume the existence of a metric tensor and impose 2 additional, desirable
properties on the connection, namely that it be torsion-free and metric compatible, and show
that there is a unique connection with these properties, called the Levi-Civita connection.

The vanishing of the torsion tells us that

[ei, ej ] +
(

Γ k
ij − Γ k

ji

)

ek = 0

or equivalently that
g([ei, ej ], ek) + ωki(ej) − ωkj(ei) = 0

where we have introduced the notation ωkj := gki ω
k
j , and where gki = g(ek, ei) are the

components of the metric tensor.

Metric-compatibility says that the covariant derivative of the metric tensor should van-
ish, that is ∇Xg = 0. Using the contraction property in the definition of covariant differen-
tiation, we have

X
(

g(Y, Z)
)

= ∇X

(

g(Y, Z)
)

= (∇Xg)(Y, Z) + g(∇XY, Z) + g(Y,∇XZ)

= 0 + g(∇XY, Z) + g(Y,∇XZ)

Inserting basis vectors for X, Y , Z leads to

ek(glm) = g(∇ek
el, em) + g(el,∇ek

em)

= g(ωn
l(ek)en, em) + g(el, ω

n
m(ek)en)

= gmnωn
l(ek) + glnωn

m(ek)

= ωml(ek) + ωlm(ek)

Taking a nonobvious combination of such terms, we obtain

ek(glm) + em(glk) − el(gkm) = ωml(ek) + ωkl(em) − ωmk(el)

+ ωlm(ek) + ωlk(em) − ωkm(el)

= 2 ωlm(ek) − g(ek, [el, em]) − g(em, [el, ek]) − g(el, [em, ek])

where the last step involves clever pairing of the terms and repeated use of the fact that
the torsion vanishes. Solving for ωlm, we obtain the Koszul formula for the Levi-Civita
connection, namely

2 ωlm(ek) = ek(glm) + em(glk) − el(gkm)

+ g(ek, [el, em]) + g(em, [el, ek]) − g(el, [ek, em])
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3. PRACTICE

a) Coordinate Basis

In a coordinate basis {dxµ}, several simplifications take place. First of all, the dual basis
consists of “pure” partial derivative operators (with no coefficients), which means further
that the commutator of any dual basis vector fields vanishes, since mixed partial derivatives
can be taken in any order. In addition, since each basis 1-form is exact, its exterior derivative
vanishes.

Starting with the connection, we have

ωκ
µ = Γ κ

µν dxν

Note that Γ κ
µν = Γ κ

νµ, since the torsion vanishes, and the Koszul formula yields

2 Γκµν = gκµ,ν + gκν,µ − gνµ,κ

where Γκµν = gκλΓ λ
µν and where commas denote partial differentiation, namely f,µ = ∂f

∂xµ .
This is usually written in the form

Γ κ
µν =

1

2
gκλ (gκµ,ν + gκν,µ − gνµ,κ)

in terms of the inverse metric gκλ, which satisfies gκλgλµ = δκ
µ.

The curvature can be obtained either from the general formula above or by computing
the curvature 2-form. In either case, one obtains

Rµ
νκλ = Γµ

νλ,κ − Γµ
νκ,λ + Γµ

ρκΓ ρ
νλ − Γµ

ρλΓ ρ
νκ

b) Orthonormal Basis

Now consider the case of an orthonormal basis {ei}, that is, one which satisfies g(ei, ej) =
±δij . Since the metric components are constant, their partial derivatives vanish. The Koszul
formula yields for the connection

2 ωlm(ek) = g(ek, [el, em]) + g(em, [el, ek]) − g(el, [ek, em])

However, this is not usually the simplest approach.

The Koszul formula guarantees us a unique torsion free, metric compatible connection.
Thus, there is a unique solution of the first Cartan structure equation with vanishing torsion,
which also satisfies the metric compatibility condition, which now reads

ek(glm) = 0 = ωml(ek) + ωlm(ek)

or simply ωml + ωlm = 0. In practice, it is often easiest to solve the equations 4

dσk + ωk
i ∧ σi = 0

subject to the condition
ωji = −ωij

Feel free to guess a solution — if it works, you’re done! The curvature is then easily calculated
from the remaining structure equation

Ri
jkl σ

k ∧ σl = dωi
j + ωi

m ∧ ωm
j

4 Note the position of the indices! Care must be taken in Lorentzian signature.
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4. TENSOR-VALUED FORMS (This section is optional! Compare §14.5 of MTW.)

There is an elegant way to generalize the exterior derivative from differential forms to
tensors of all types. This is done by first considering “tensor-valued” differential forms,
whose “components” are tensors. A good example is the vector-valued 1-form 5

dP = ei ⊗ σi

which is really a
(

1
1

)

tensor (the identity matrix!). Working by analogy with

df(X) = ∇Xf

for functions f and vector fields Y , we require

dY (X) = ∇XY

Comparing this with the formula on the first page, namely

∇XY =
(

X(Y k) + ωk
i(X)Y i

)

ek =
[(

dY k + Y iωk
i

)

(X)
]

ek

we are led to require
dei := ek ⊗ ωk

i

so that
d(Y iei) = d(eiY

i) = ei ⊗ dY i + dei ⊗ Y i = ek ⊗
(

dY k + ωk
iY

i
)

It is now possible to take covariant derivatives of contravariant tensors (tensors of type
(

p
0

)

)

simply by applying this generalized exterior derivative d! 6 Don’t forget the product rule
for d, which means in particular that

d(S ⊗ α) = dS ∧ α + S ⊗ dα

for tensors S and forms α.

Two computations are particularly nice in this formalism. First of all,

d2P := d(dP) = dei ∧ σi + ek ⊗ dσk

= ek ⊗ ωk
i ∧ σi + ek ⊗

(

Θk − ωk
i ∧ σi

)

= ek ⊗ Θk

In particular, the condition that the torsion vanish is just the statement that d2P = 0.
Similarly, considering an arbitrary vector field Y , we have

d2Y = d(dY ) = d
(

ek ⊗
(

dY k + ωk
jY

j
))

= dek ∧
(

dY k + ωk
jY

j
)

+ ei ⊗ d
(

dY i + Y jωi
j

)

= ei ⊗ ωi
k ∧

(

dY j + Y jωk
j

)

+ ei ⊗
(

0 + dY j ∧ ωi
j + Y jdωi

j

)

= ei ⊗
(

dωi
j + ωi

k ∧ ωk
j

)

Y j = ei ⊗ Ωi
jY

j

so that d2 acting on vectors gives the curvature.

5 The “d” in dP should be thought of as part of the name, although it can be motivated by considering
d~r = ~ı dx + ~ dy in rectangular coordinates in Euclidean R

2.

6 While this can be extended to all tensors, some confusion results, since the derivative of the tensor σi

differs from the derivative of the 1-form σi.
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APPENDIX: Tensors

We start with an arbitrary surface M (“smooth manifold”), described in terms of suit-
able coordinates xµ. There are usually many admissible coordinates, such as polar and
rectangular coordinates on (most of) R

2.

A vector field X on M , often simply called a vector , is a differential operator which acts
on functions on M by taking their directional derivative in the direction X. For instance, ∂

∂xµ

is a vector field, and any vector field can be written as X = Xµ ∂
∂xµ , where the components

Xµ are functions on M , and where we have introduced the Einstein summation convention

that repeated indices are summed. The vector fields
{

∂
∂xµ

}

thus form a basis, called a

coordinate basis . You can think of this as replacing the usual Euclidean basis vector ~ı by
the differential operator ∂

∂x , and so forth. There is of course a coordinate basis for each set
of coordinates; the different bases are related by Jacobian transformations.

A 1-form α on M is a linear map which acts on vector fields. We start with the
differential df of a function f on M , and define df(X) := X(f); both of these expressions
yield the directional derivative of f in the direction of X. We therefore have dxµ( ∂

∂xν ) = δµ
ν ,

where δ denotes the Kronecker delta. The basis of coordinate differentials {dxµ} is therefore
dual to the above coordinate basis of vector fields, and in particular dxµ(X) = Xµ. An
arbitrary 1-form α can be written as α = αµdxµ in this basis, where the components αµ are
again functions on M . Finally, α(X) = αµXµ.

A tensor of type
(

p
q

)

is a multilinear map which acts on p 1-forms and q vector fields.

A 1-form is thus a tensor of type
(

0
1

)

and, since the dual of the dual of a vector space is the

original vector space, a vector field is a tensor of type
(

1
0

)

. Functions are regarded as
(

0
0

)

tensors. A very important tensor is the metric tensor g (if there is one!), which has type
(

0
2

)

.

This means it acts on 2 vector fields — giving their “dot product”, that is g(X,Y ) = X · Y .
A basis for tensors of a given type can be constructed from the bases for vectors and 1-
forms. For instance, the metric can be expanded as g = gµν dxµ ⊗ dxν , where the tensor
product ⊗ means that (dxµ ⊗ dxν) (X,Y ) = dxµ(X)dxν(Y ). The metric for (Euclidean) R

2

in rectangular coordinates is g = dx ⊗ dx + dy ⊗ dy, which should look familiar!
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