1. DECOMPOSABLE FORMS

Denote the p-forms in \mathbb{R}^{n} by $\wedge^{p}\left(\mathbb{R}^{n}\right)$. A typical 1-form in \mathbb{R}^{2} would therefore take the form $F=F_{x} d x+F_{y} d y \in \Lambda^{1}\left(\mathbb{R}^{2}\right)$.
A p-form $\gamma \in \Lambda^{p}\left(\mathbb{R}^{n}\right)$ is called decomposable if there exist 1-forms $\alpha_{i} \in \Lambda^{1}\left(\mathbb{R}^{n}\right)$ with

$$
\gamma=\alpha_{1} \wedge \ldots \wedge \alpha_{p}
$$

(a) Show that all elements of $\Lambda^{2}\left(\mathbb{R}^{3}\right)$, that is, all 2 -forms in \mathbb{R}^{3}, are decomposable. In other words, show that

$$
H=H_{x} d y \wedge d z+H_{y} d z \wedge d x+H_{z} d x \wedge d y
$$

is decomposable.
HINT: Consider the previous assignment!
You may cite your solution to the previous assignment without proof, so long as an explicit reference is given ("see HW \#1"). If you do this, it wouldn't hurt to include a copy of your previous assignment.
(b) Find an example of an indecomposable p-form.

HINT: Don't work in $\mathbb{R}^{3} \ldots$
(c) Is $\gamma \wedge \gamma=0$? Should it be? Can it be?

2. PICTURES OF FORMS

Let $\alpha=3 d x$ and $\beta=4 d y$.
(a) Draw a single picture showing the "stacks" corresponding to both α and β.

You may want to use different colors for the stacks corresponding to α and β. Your drawing should be correctly scaled.
(b) Draw a separate picture showing the stack corresponding to $\gamma=\alpha+\beta$.
(c) Choose a vector $\overrightarrow{\boldsymbol{v}} \in \mathbb{R}^{2}$ that is not parallel to the coordinate axes. Add $\overrightarrow{\boldsymbol{v}}$ to your previous diagrams and use them to compute $\alpha(\overrightarrow{\boldsymbol{v}}), \beta(\overrightarrow{\boldsymbol{v}})$, and $\gamma(\overrightarrow{\boldsymbol{v}})$.
Your computation should be geometric, not algebraic.
(d) Did you obtain $\gamma(\overrightarrow{\boldsymbol{v}})=\alpha(\overrightarrow{\boldsymbol{v}})+\beta(\overrightarrow{\boldsymbol{v}})$? Should you have?

