You may wish to recall the following facts for $f \in \Lambda^{0}\left(\mathbb{R}^{n}\right), \alpha, \gamma \in \Lambda^{p}\left(\mathbb{R}^{n}\right)$ and $\beta \in \Lambda^{q}\left(\mathbb{R}^{n}\right)$:

$$
\begin{aligned}
* * & =(-1)^{p(n-p)+s} \\
d f & =\frac{\partial f}{\partial x^{i}} d x^{i} \\
d^{2} & =0 \\
\beta \wedge \alpha & =(-1)^{p q} \alpha \wedge \beta \\
\alpha \wedge * \gamma & =g(\alpha, \gamma) \omega \\
d(f d \alpha) & =d f \wedge d \alpha \\
d(\alpha \wedge \beta) & =d \alpha \wedge \beta+(-1)^{p} \alpha \wedge d \beta
\end{aligned}
$$

You may wish to use the following relationships in (Euclidean) \mathbb{R}^{3} :

$$
\begin{aligned}
\overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}} & =F \\
\overrightarrow{\boldsymbol{F}} \cdot \overrightarrow{\boldsymbol{G}} & =*(F \wedge * G) \\
(\overrightarrow{\boldsymbol{F}} \times \overrightarrow{\boldsymbol{G}}) \cdot d \overrightarrow{\boldsymbol{r}} & =*(F \wedge G) \\
\vec{\nabla} f \cdot d \overrightarrow{\boldsymbol{r}} & =d f=\nabla f \\
(\vec{\nabla} \times \overrightarrow{\boldsymbol{F}}) \cdot d \overrightarrow{\boldsymbol{r}} & =* d F=\nabla \times F \\
\vec{\nabla} \cdot \overrightarrow{\boldsymbol{F}} & =* d * F=\nabla \cdot F \\
\triangle f=\vec{\nabla} \cdot \vec{\nabla} f & =* d * d f=\nabla \cdot \nabla f \\
h_{u} & =\left|\frac{\partial \overrightarrow{\boldsymbol{r}}}{\partial u}\right|
\end{aligned}
$$

